Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [44]
Наш с вами Пафнутий был также в некотором роде чудотворцем. Он удостоился чести добиться единственных реальных успехов на пути к доказательству ТРПЧ в период между тем, как Дирихле поднял Золотой Ключ в 1837 году, и тем, как Риман повернул его в 1859-м. Занятно, что наиболее оригинальная работа Чебышева оказалась в стороне от основного направления исследований по ТРПЧ и послужила образованию менее значительного бокового течения, которое развивалось само по себе и слилось с главным потоком лишь 100 лет спустя.
Чебышев на самом деле написал две статьи по ТРПЧ. Первая, датируемая 1849 годом, озаглавлена «Об определении числа простых чисел, не превосходящих данной величины»[69]; стоит отметить схожесть с заглавием статьи Римана, написанной 10 лет спустя. В этой работе Чебышев взял Золотой Ключ Эйлера, поиграл с ним немного, примерно как Дирихле за 12 лет до того, и пришел к следующему интересному результату.
Если π(N) ~ CN/ln N для некоторого фиксированного числа C, то C должно быть равным 1.
Вся проблема, конечно, лежала в этом «если». Чебышев не смог преодолеть эту проблему, как, впрочем, в течение полувека не смог и никто другой.
Вторая статья Чебышева, датируемая 1850 годом, значительно более любопытна. Вместо использования Золотого Ключа она начинается с формулы, доказанной шотландским математиком Джеймсом Стирлингом в 1730 году и выражающей приближенные значения факториальной функции для больших чисел. (Факториал числа N равен 1×2×3×4×…×N. Факториал числа 5, например, равен 120: 1×2×3×4×5 = 120. Обычно для факториала числа N используется обозначение N!. Формула Стирлинга утверждает, что для больших значений N его факториал примерно равен
). Чебышев превратил ее в другую формулу, содержащую ступенчатую функцию — функцию, которая имеет одно значение на некотором интервале аргументов, а затем прыгает к другому значению.Вооруженный только этими средствами и используя ряд вполне элементарных приемов из дифференциального и интегрального исчисления, Чебышев получил два важных результата. Первый состоит в доказательстве «постулата Бертрана», выдвинутого в 1845 году французским математиком Жозефом Бертраном. Постулат гласит, что между любым числом и его удвоением (например, между 42 и 84) всегда найдется простое число. Второй результат Чебышева таков.
π(N) не может отличаться от N/ln N более чем примерно на 10% в большую или меньшую сторону.
Вторая статья Чебышева важна в двух отношениях. Прежде всего, использование в ней ступенчатой функции могло вдохновить Римана на использование подобной же функции в его работе 1859 года (об этом будет подробно рассказано ниже). Не подлежит сомнению, что Риман знал о работе Чебышева; имя российского математика появляется в записках Римана (где оно пишется как «Tschebyschev»).
Но большего внимания заслуживает сама идея подхода, развитого Чебышевым во второй статье. Он получил свои результаты без использования теории функций комплексной переменной. У математиков есть короткий способ для выражения этого факта: они говорят, что методы Чебышева «элементарны». Риман в своей работе 1859 года не использовал элементарные методы. Для решения исследуемой им проблемы он привлек всю мощь теории функций комплексной переменной. Полученные результаты оказались столь замечательными, что другие математики последовали его примеру, и в конце концов ТРПЧ была доказана с использованием неэлементарных методов Римана.
Вопрос о том, можно ли доказать ТРПЧ элементарными методами, оставался открытым, но по прошествии нескольких десятилетий общее мнение утвердилось в том, что это невозможно. Так, в тексте Алберта Ингэма 1932 года «Распределение простых чисел» автор сообщает в подстрочном примечании: «Доказательство теоремы о распределении простых чисел „в терминах вещественных переменных“, т.е. доказательство, не вовлекающее, будь то явным или неявным образом, понятие аналитической функции комплексной переменной, никогда не было обнаружено, и теперь понятно, почему так и должно быть».
Ко всеобщему изумлению, такое доказательство было обнаружено в 1949 году Атле Сельбергом — норвежским математиком, работавшим в Институте высших исследований в Принстоне, штат Нью-Джерси.[70] История получения этого результата неоднозначна, поскольку Сельберг предварительно сообщил о своих, еще неокончательных, идеях эксцентричному венгерскому математику Паулю Эрдешу, который использовал их и получил свое собственное доказательство одновременно с Сельбергом. После смерти Эрдеша в 1996 году были написаны две его популярные биографии, и любознательный читатель может найти полный отчет об этой запуганной истории в любой из них. Доказательство называется «доказательством Эрдеша-Сельберга» в Венгрии и «доказательством Сельберга» за ее пределами.>{A2}
В дополнение к своим исследованиям Чебышев был замечательным научным руководителем, умевшим увлечь своими темами. Его ученики несли идеи и методы учителя в другие российские университеты, повсюду пробуждая интерес и поднимая уровень преподавания. Сохраняя активность и на восьмом десятке лет, Чебышев был также оригинальным изобретателем, сконструировавшим несколько арифмометров, которые сохранились до нашего времени в музеях Москвы и Парижа. В его честь назван лунный кратер, расположенный около 135°W 30°S.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.