Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [43]

Шрифт
Интервал

Оба они защитили свои диссертации с интервалом в несколько месяцев — Риман в декабре 1851 года, а Дедекинд на следующий год. Обоих экзаменовал Гаусс, которому к тому моменту шел восьмой десяток, что не помешало ему сохранять исключительную чуткость к редким математическим талантам. По поводу диссертации, представленной молодым Дедекиндом, еще не достигшим своей математической зрелости, Гаусс написал отзыв, который лишь едва выходил за рамки сухого официального одобрения. Но по поводу диссертации Римана он разразился — а Гаусс был человеком, который нечасто расточал похвалы, — таким пассажем: «Существенная и ценная работа, которая не просто удовлетворяет всем требованиям, предъявляемым к докторским диссертациям, но и намного превосходит их».

И Гаусс не ошибся. (В том, что касается математики, он вряд ли вообще когда-либо ошибался.) Докторская диссертация Римана является ключевой работой в истории теории функций комплексной переменной. Я постараюсь подробно рассказать о теории функций комплексной переменной в главе 13, а пока достаточно сказать, что это очень глубокая, мощная и прекрасная ветвь анализа. До настоящего времени практически первое, что изучается в курсе теории функций комплексной переменной, — это условия Коши-Римана, которыми определяются хорошо себя ведущие и заслуживающие дальнейшего изучения функции. Эти уравнения в их современном виде впервые появились в докторской диссертации Римана. Эта работа также содержит первые наброски теории римановых поверхностей, которая представляет собой слияние теории функций с топологией (последний предмет в те времена также был новинкой, в нем не существовало какой бы то ни было связной системы знания, а только разрозненные результаты, восходящие ко временам Эйлера).[65] Докторская диссертация Римана была, одним словом, шедевром.

И Риман, и Дедекинд приступили ко второй ступени академического марафона, которому они себя посвятили, — второй диссертации и пробной лекции, которые требовались для занятия преподавательской должности в университете.


III.

Оставим на некоторое время Бернхарда Римана в его комнате в далеком Геттингене за трудами над диссертацией на право чтения лекций и перенесемся назад на год или два во времени и на тысячи миль в пространстве — в Санкт-Петербург. Много воды утекло под мостами этого города с тех пор, как мы побывали здесь в последний раз, наблюдая, как Леонард Эйлер радовался жизни и плодотворно работал, несмотря на старость и слепоту, во времена правления Екатерины Великой. Эйлер умер в 1783-м, а сама императрица — в 1796 году. Екатерине наследовал ее эксцентричный и безответственный сын Павел. Четырех с половиной лет правления Павла оказалось более чем достаточно для знати, чтобы организовать переворот, удушить Павла и посадить на трон его сына Александра.

Вскоре вся нация оказалась поглощена конфликтом с Наполеоном, а ее говорящая по-французски аристократия — блеском светской жизни, как это описано Толстым в «Войне и мире». После войны Александр на какое-то время увлекся «управляемым самодержавием», затем последовал провал восстания группировки, боровшейся за либеральные идеи и известной под именем декабристов, и в 1825 году трон перешел к Николаю I, склонному к более старомодному абсолютизму.

Однако подтверждение и возобновление принципов абсолютизма не могло предотвратить грандиозных социальных перемен, наиболее достопамятная из которых — первый великий расцвет русской литературы (Пушкин, Лермонтов и Гоголь). Университет в Санкт-Петербурге, в то время отделенный от академии, разросся и процветал; кроме того, были основаны новые университеты в Москве[66], Харькове и Казани. Казанский университет мог похвастаться присутствием великого математика Николая Лобачевского, который занимал должность ректора до своего увольнения в 1846 году. Лобачевский был создателем неэвклидовой геометрии, о которой довольно скоро нам будет что сказать.[67]

В 1849-1850 годах, через 25 лет после воцарения Николая I, интеллектуальная жизнь в России подверглась еще одному всплеску репрессий, вызванному реакцией Николая на европейские революции 1848 года. Число принимавшихся в университеты было сокращено, а учившиеся за границей россияне получили указание вернуться. В такой обстановке молодой преподаватель Санкт-Петербургского университета выпустил две замечательные статьи о ТРПЧ.

Первое, что необходимо сказать о Пафнутии Львовиче Чебышеве, это что его фамилия — кошмар для всякого, кто занимается поиском по базам данных. В своих изысканиях для данной книги я насчитал 32 различных варианта написания его фамилии: Cebysev, Cebyshev, Chebichev, Chebycheff, Chebychev и т.д., и т.д.[68]

А если вы обратили внимание и на необычное имя Пафнутий, то вы не одиноки. Примерно в 1971 году на него обратил внимание математик Филип Дж. Дэвис. Дэвис решил исследовать происхождение имени Пафнутий и написал о своих изысканиях исключительно забавную книгу «Нить» (1983). Если очень коротко, то имя Пафнутий имеет коптское происхождение (Papnute — «Божий человек») и проникло в Европу через коптское христианство; такое имя носил один из второстепенных Отцов Церкви в IV столетии. Присутствовавший на Никейском соборе епископ Пафнутий (Paphnutius, как обычно пишется его имя) высказывался против целибата духовенства. К более позднему времени относится вскользь упоминаемый Дэвисом преподобный Пафнутий Боровский, сын знатного татарина; в возрасте 20 лет он удалился в монастырь, где и оставался до своей смерти в 94-летнем возрасте (1478). Вот что говорит агиограф этого Пафнутия: «Он был девственник и аскет и в силу этого великий чудотворец и пророк». (Примерно посередине моей работы над этой главой я получил электронное письмо от читательницы моей веб-колонки с просьбой предложить имя для ее новой собаки. Так что теперь некий Пафнутий гоняет белок где-то на Среднем Западе.)


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.