Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [22]
Будучи одной из тех потрясающих личностей, существование которых опровергает взгляд на ход истории как на театр теней — бездушную пьесу, разыгрываемую обезличенными силами, — Петр продолжил реформы в сфере управления, дворянства, торговли, образования и даже повседневного одеяния своих подданных. Не все из этого заработало — другими словами, не все закрепилось; и не все достигло сумрачных, скрытых в лесах глубин этой обширной и древней страны; но нет сомнения, что положение, в котором Петр оставил Россию, было совсем не похоже на то, в котором он ее принял.
И, что имеет прямое отношение к теме данной книги, он превратил ее в место, гостеприимное для математиков и математики![29]
В январе 1724 года Петр издал указ об основании Академии наук в Санкт-Петербурге. В указе объяснялось, что в обычной ситуации академия наук, где ученые занимаются исследованиями и изобретениями для блага государства, отличается от университета, предназначение которого состоит в обучении молодых людей. Однако из-за острого недостатка образованных людей в России под управлением Санкт-Петербургской академии будут находиться еще университет и гимназия (т.е. учреждение для среднего образования). Предполагалось, что академия будет иметь также свои собственные обсерватории, лаборатории, мастерские, издательство, печатный цех и библиотеку. Петр ничего не делал наполовину.
Нехватка образования в России была и правда столь высока, что попросту не существовало россиян, способных стать членами академии. Более того, поскольку в России отсутствовало достаточное число начальных и средних школ, не было даже молодых россиян, в достаточной степени подготовленных для того, чтобы стать студентами в университете. Эти проблемы были решены путем импорта требуемого персонала. В Европе подобная практика была вполне распространенной. Первым директором Парижской академии наук, основанной за 60 лет до того, был голландский физик Кристиан Гюйгенс. Правда, Санкт-Петербург находился далеко от главных центров европейской культуры, а западноевропейцы все еще воспринимали Россию как страну темную и варварскую, и поэтому им следовало предложить очень привлекательные условия. Как бы то ни было, в конце концов колеса механизма закрутились, нехватка университетских студентов была компенсирована за счет импорта восьми немецких юношей. Санкт-Петербургская академия распахнула свои двери в августе 1725 года — слишком поздно для того, чтобы царь Петр мог председательствовать на церемонии: он умер за шесть месяцев до этого.
Среди иностранных ученых, присутствовавших на первом заседании Санкт-Петербургской академии наук, были два брата, Николай и Даниил Бернулли. Им было соответственно 30 и 25 лет — то были сыновья Иоганна Бернулли из швейцарского Базеля, того самого господина, с которым мы уже встречались в главе 1.iii в связи с гармоническим рядом. (Имелась целая династия математиков Бернулли; в описываемом поколении был и третий брат, который последовал примеру отца и стал профессором математики в Базельском университете и который «воплощал в себе математический гений своего родного города во второй половине XVIII столетия», как написано в «Словаре научных биографий».)
К несчастью, проведя менее года в Санкт-Петербурге, Николай Бернулли умер («от чахоточной лихорадки»), в результате чего в академии образовалась вакансия. Даниил Бернулли еще в Базеле был знаком с Леонардом Эйлером и сейчас же рекомендовал его. Эйлер был рад возможности занять академический пост в столь молодом возрасте и прибыл в Санкт-Петербург 17 мая 1727 года, через месяц после своего двадцатилетия.
По несчастливому стечению обстоятельств это произошло спустя десять дней после смерти императрицы Екатерины, жены Петра, которая наследовала ему на троне и которая продолжала воплощать в жизнь его план устройства академии. Для России наступали не лучшие времена. Пятнадцатилетний период между смертью Петра и воцарением его дочери Елизаветы был временем слабого, безвольного руководства, политики временщиков и периодических приступов ксенофобии. Все враждующие кланы содержали сети шпионов и доносчиков, и атмосфера в столице (каковой теперь являлся Санкт-Петербург) менялась с «плохо» на «очень плохо». В правление жестокой, коварной и сумасбродной императрицы Анны Иоанновны (1730–1740) Россия скатилась к одному из периодов государственного террора, к которому сама императрица испытывала особую склонность: в течение этого времени не прекращались суды по обвинению в измене, массовые казни и другие зверства. Этот период получил печальную известность под названием бироновщины, по имени фаворита Анны Иоанновны немца Эрнста Иоганна Бирона[30], на которого простые россияне возлагали всю вину.
Эйлер стойко выносил все это в течение 13 лет, с головой погрузившись в работу и твердо держась подальше от двора с его интригами. «Общая осмотрительность привила ему неистребимую привычку к работе», — пишет Э.Т. Белл, и это кажется разумным объяснением невероятной продуктивности Эйлера. Даже сейчас еще не закончено полное издание собрания его трудов. К настоящему моменту оно состоит из 29 томов по математике, 31 по механике и астрономии, 13 по физике и 8 томов переписки.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.