Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [123]

Шрифт
Интервал

Хотя недолгие годы были ему отпущены и немного имеется печатных страниц, запечатлевших результаты его исследований, имя его есть и будет на языке у математиков. Большая часть его трудов — шедевры, наполненные оригинальными методами, глубокими идеями и широким творческим воображением.

Джордж Кристал, из статьи «Риман» в издании Encyclopedia Britannica, 1911 год

Приложение 1

Гиганты и их покровители

Леонард Эйлер


Петр Великий


Карл Фридрих Гаусс


Карл-Вильгельм-Фердинанд, герцог Брауншвейгский


Бернхард Риман, его наставник и его друг

Риман, начало 1950-х годов


Риман, 1863


Лежен Дирихле


Рихард Дедекинд

Теорема о распределении простых чисел

Шарль де ля Валле Пуссен


Жак Адамар


Пафнутий Львович Чебышев


Атле Сельберг

Первопроходцы XX столетия

Давид Гильберт


Эдмунд Ландау


Г.Х. Харди


Джон Идензор Литлвуд

Вычислительное направление

Йорген Педерсон Грам


Карл Зигель


Алан Тьюринг


Эндрю Одлыжко

Алгебраисты

Эмиль Артин


Андре Вейль


Пьер Делинь


Ален Конн

Физическое направление

Джордж Пойа


Фримен Дайсон


Хью Монтгомери


Сэр Майкл Берри

Гипотеза Линделёфа и модель Крамера

Эрнст Линделёф


Харальд Крамер

Счет и измерение

Автор с семьей и Тай-е, которому арифметически 97 лет, но аналитически всего 95,522…

Приложение 2. Гипотеза Римана в песне

Том Апостол, заслуженный профессор математики в отставке из Калтеха, написал в 1955 году гимн по поводу Гипотезы Римана (ГР) и исполнил его на конференции по теории чисел, проходившей в Калтехе в июне того года. Исходно написанные Томом стихи заканчивались на 32-й строке; последние два куплета в 1973 году вывесил на доске объявлений в Кембриджском университете алгебраический тополог Сондерс Маклейн. В песне упоминается гипотеза Линделёфа (ГЛ) — младшая сестра ГР. Она была сформулирована в 1908 году, и, по существу дела, ее надо было бы привести где-то в главе 14; но, поскольку она второстепенна по отношению к нашей главной теме и поскольку в ней используется обозначение «Ο большое» из главы 15, а также потому, что я в тот момент посчитал, что в книге и так уже достаточно математики, я не стал ее включать в текст. Правда, стихи Тома без нее не понять, а заставить себя выкинуть песню я не смог. В результате перед вами и сама песня, и, в качестве бесплатного приложения, еще и гипотеза![215]


Где же нули у функции дзета?
(на мотив Sweet Betsy from Pike)
1   Где же нули у функции дзета?
    Нам Риман оставил догадку про это:
    «На критической линии, там они все,
    А их плотность — один-на-два-π lT».
5   И эта гипотеза, словно заноза,
    Многих людей довела до психоза.
    Стремились они дать строгий расчет,
    Что происходит, когда t растет.
     Ландау, и Бор, и Крамер, и Харди
10 Среди одержимых шли в авангарде.
     Но все-таки даже они не смогли
     Уверенно все перечислить нули.
     Впоследствии Харди сумел доказать,
     Что на этой прямой их несметная рать,
15 Но его теорема все ж не исключает,
     Что где-то еще те нули обитают.
     Пусть P будет π минус Li — вот прелестно!
     Но как там с порядком P — неизвестно.
     Если корень из x ln x — потолок,
20 То Гипотезу Римана вывесть я б смог.
     Вопрос про μ(σ) задал Линделёф;
     Над ним потрудилось немало умов.
     Проверим критическую полосу,
     И сколько нулей там — как на носу.
25 Но функция эта ведет себя сложно,
     Ее изучили, насколько возможно.
     «График должен быть выпуклым, — смог он сказать, —
     Если сигма сама превосходит 0,5».
     Так где же нули у функции дзета?
30 Даже через столетие все нет ответа.
     А ТРПЧ можно все улучшать,
     Но контур обязан нули избегать.
     Тем временем Вейль обратился к предмету,
     Используя более хитрую дзету.
35 Коль характеристика поля равна
     Простому числу — теорема верна.
     Мораль этой притчи нетрудно понять,
     И всем юным гениям следует знать:
     Если не выручает обычный подход,
40 То по модулю p — авось повезет!
Том М. Апостол, перевод Сергея Ельницкого
Where are the zeros of zeta of s?
Where are the zeros of zeta of s?
G.F.B. Riemann has made a good guess:
«They're all on the critical line,» stated he,
«And their density's one over two pi log T».
This statement of Riemann's has been like a trigger,
And many good men, with vim and with vigor,
Have attempted to find, with mathematical rigor,
What happens to zeta as mod t gets bigger.
The efforts of Landau and Bohr and Cramér,
Hardy and Littlewood and Titchmarsh are there.
In spite of their effort and skill and finesse,
In locating the zeros there's been no success.
In 1914 G.H. Hardy did find,
An infinite number that lie on the line.
His theorem, however, won't rule out the case,
That there might be a zero at some other place.
Let P be the function pi minus Li;
The order of P is not known for x high.
If square root of x times log x we could show,
Then Riemann's conjecture would surely be so.
Related to this is another enigma,
Concerning the Lindelöf function mu sigma,
Which measures the growth in the critical strip;
On the number of zeros it gives us a grip.
But nobody knows how this function behaves,
Convexity tells us it can have no waves.
Lindelöf said that the shape of its graph
Is constant when sigma is more than one-half.

Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.