Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [121]
Вопрос, который всегда задают читатели-нематематики, вопрос, который возникает всякий раз, когда математики обращаются к аудитории из простых людей: какая от всего этого польза? Предположим, что Гипотезу Римана доказали или опровергли. Какие практические следствия отсюда произойдут? Станем ли мы от этого здоровее, повысится ли наш комфорт, станет ли наша жизнь более безопасной? Изобретут ли новые устройства? Сможем ли мы быстрее путешествовать? Получим ли более разрушительное оружие? Колонизируем ли Марс?
Пожалуй, мне пора снять маску и предстать перед вами в образе чистого математика sans mélange[209], которого вообще не интересуют подобные вопросы. Для большинства математиков — как и для большинства физиков-теоретиков — стимулом является не какая бы то ни было идея об улучшении здоровья или повышении комфорта человеческой расы, но чистая радость открытия и удовольствие от преодоления сложных проблем. Математикам, в общем, приятно, когда их результаты находят какое-нибудь практическое применение (во всяком случае, если это применение в мирных целях), но мысли о таких вещах не часто проникают в ту сферу их жизни, которая связана с работой. На конференции в Курантовском институте я просидел четыре дня с 9:30 до 18:00 вечера на докладах, где рассказывалось о вопросах, связанных с ГР, и ни разу не слышал, чтобы упоминались практические приложения.
Вот что по этому поводу говорил Жак Адамар в своей книге «Исследование психологии процесса изобретения в области математики»:
Ответ возникает перед нами еще до того, как возник вопрос <…> Практическое приложение обнаруживается, когда его не ищут, и можно сказать, что весь прогресс человечества зиждется на этом принципе <…> Практические вопросы чаще всего удается разрешить с помощью уже существующих теорий <…> Редко случается так, что важные математические изыскания предпринимаются непосредственно ввиду той или иной практической пользы; мотивировкой их является то же стремление, которое служит основой всякой научной деятельности, — стремление узнать и понять.
Г.X. Харди на заключительных страницах своей странной «Апологии» высказался по этому поводу более резко и откровенно:
Я никогда не делал ничего «полезного». Ни одно из моих открытий не произвело и не имеет шансов произвести, будь то явным или неявным образом, к добру или ко злу, ни малейшей перемены в удобствах жизни <…> При оценке по стандартам практики значение моей математической жизни равно нулю.
В отношении теории простых чисел применимо высказывание Адамара «Ответ возникает перед нами еще до того, как возник вопрос», а заявление Харди уже не верно. С конца 1970-х годов простые числа стали приобретать все большее значение в создании методов шифровки — как в военных, так и в гражданских целях. Способы, позволяющие проверить, является ли данное большое число простым, способы разложения больших чисел на простые множители, способы производства простых чисел огромной величины — все эти вопросы действительно приобрели исключительно e практическое звучание в последние два десятилетия XX века. Теоретические результаты, включая и несколько из тех, что получил Харди, сыграли существенную роль на пути к этим достижениям, которые, среди прочего, позволяют использовать кредитную карту для покупки товаров через Интернет. Разрешение вопроса о ГР, несомненно, повлекло бы дальнейшее развитие в этой области, переведя в разряд истинных все те бессчетные теоремы о простых числах, которые начинаются словами «В предположении, что Гипотеза Римана верна…», и подстегнув дальнейшие открытия.[210]
И конечно, если физики и правда преуспеют в идентификации «римановой динамики», то это изменит наше понимание физического мира.
К сожалению, невозможно предсказать, к чему приведет такое изменение. Даже умнейшие люди не в состоянии высказывать подобные предсказания, а тем, кто их все же высказывает, доверять не следует. Вот математик за работой всего около 100 лет назад:
Каждое утро я сажусь перед чистым листом бумаги. В течение дня, с коротким обеденным перерывом, я все смотрю и смотрю на чистый лист. Порой, когда наступает вечер, он все еще пуст. Два лета — 1903 и 1904 годов — останутся в моей памяти как период полного интеллектуального тупика <…>. Вполне вероятно, что весь остаток моей жизни может пройти за разглядыванием этого чистого листа бумаги.
Это из автобиографии Бертрана Рассела. Терзавшая его проблема состояла в попытке найти определение «числа» на языке чистой логики. В самом деле, что именно обозначает «три»? Немецкий логик Готлоб Фреге ранее предложил ответ, но Рассел нашел изъян в рассуждениях Фреге и искал способ заделать дыру.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.