Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [105]
При первом появлении современной теории хаоса физики восприняли ее как чисто классический предмет, не имеющий никакого отношения к квантовой теории. Хаос возникает из явлений, подобных тем, какие происходят в задаче трех тел, вследствие того, что начальные условия задаются вещественными числами, числами для измерения, которые можно дробить до бесконечности; их можно изменить на 1 процент, или на 0,1 процента, или на 0,001 процента… Поскольку условия можно варьировать бесконечно, возникает бесконечно много возможных вариантов движения системы. В квантовой же теории, наоборот, начальные условия можно варьировать на 1, 2 или 3 единицы, но не на 1>1/>2 или 2,749. Получается так, что в квантовой теории для хаоса «не должно быть места». Верно, что в квантовой механике имеется некоторая степень неопределенности, но управляющие всем уравнения тем не менее линейны. Малые возмущения приводят к малым последствиям, как это имеет место и для классического уравнения vis viva в задаче двух тел.
И все же в динамических системах квантового масштаба можно наблюдать некоторую степень хаоса. Упорядоченную структуру уровней энергии для электронов на орбите вокруг атомного ядра, например, можно «взболтать», приведя в нерегулярное состояние путем наложения достаточно сильного магнитного поля. (Это, кстати, одна из динамических систем, моделируемых операторами ГУА.) После этого поведение атома становится хаотичным — оно будет радикально другим уже при самом легком изменении начальных условий.
Однако даже если такие системы с квантовым хаосом и сохраняют свое существование в течение некоторого времени, то законы квантовой механики в конце концов приводят их к порядку, отфильтровывая весь хаос. Число разрешенных состояний уменьшается; число запрещенных растет. Чем больше и сложнее система, тем большее время занимает восстановление порядка за счет квантовых законов и тем больше число разрешенных состояний… пока, уже на масштабе нашего обычного мира, утверждение квантового порядка не станет занимать триллионы лет, а число разрешенных состояний не достигнет столь большой величины, что его спокойно можно будет считать бесконечным. Поэтому в классической физике и имеется хаос.
Еще в 1971 году физик Мартин Гутцвиллер[181] нашел способ связать хаотические системы в классическом масштабе с подобными системами в квантовом мире путем взятия предела в уравнениях квантовой механики, когда квантовый множитель — постоянная Планка — стремится к нулю. Таким образом получается «квазиклассическая» система, а периодические орбиты, лежащие в основе классических хаотических систем, отвечают собственным значениям оператора, задающего эту систему.
Майкл Берри показал, что если риманов оператор существует, то он моделирует одну из этих квазиклассических хаотических систем, причем его собственные значения — мнимые части нулей дзета-функции — являются уровнями энергии этой системы. Периодические орбиты в аналогичной классической хаотической системе отвечали бы… — простым числам! (Строго говоря, их логарифмам). Кроме того, он показал, что у этой квазиклассической системы не было бы свойства «симметрии относительно обращения времени» — другими словами, если представить себе, что все скорости всех частиц в системе мгновенно и одновременно заменяются на противоположные, то система не вернется к своему начальному состоянию. (Хаотические системы могут допускать, а могут и не допускать обращение времени. Те, которые его допускают, моделируются не операторами типа операторов ГУА, а операторами другого вида, принадлежащими другому ансамблю — ГОА, т.е. гауссову ортогональному ансамблю.) Работа Берри (в значительной ее части — в сотрудничестве с его коллегой из Бристоля Джонатаном Китингом) представляет собой тонкое и глубокое исследование. Например, он очень детально проанализировал формулу Римана-Зигеля с целью глубоко проникнуть в природу нулей и их влияния друг на друга на различных отрезках их существования. На момент написания книги он пока не отождествил динамическую систему, отвечающую оператору Римана, но если такой оператор существует, то благодаря его работе мы распознаем его немедленно, как только он попадется нам на глаза.>{A5}
Альтернативный подход развил другой исследователь — Ален Конн, профессор математики из парижского Коллеж де Франс. Вместо того чтобы выискивать, оператор какого типа мог бы иметь своими собственными значениями нули дзета-функции, он просто взял и построил такой оператор.
Это потребовало немалой ловкости. Оператор необходимо снабдить чем-то, на что он может действовать. Операторы того типа, о которых говорилось выше, действуют на пространствах. Плоское двумерное пространство может послужить иллюстрацией общего принципа, если в качестве наглядного пособия взять лист миллиметровки, хотя при этом и придется представлять себе, что он продолжается по всем направлениям до бесконечности. Предположим, что мы повернули это пространство на 30 градусов против часовой стрелки, так что каждая точка в нем тем самым переместилась в некоторую другую точку (за единственным исключением точки, вокруг которой происходит вращение, — она-то остается на месте). Это вращение дает пример
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.