Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [104]
Тот факт, что чистая теория чисел — наука о натуральных числах и их взаимоотношениях — может соотноситься с субатомной физикой, вовсе не удивителен. В квантовой физике арифметическая составляющая выражена намного сильнее, чем в классической физике, поскольку основополагающая идея состоит в том, что материю и энергию нельзя делить до бесконечности. Энергия передается только в виде 1, 2, 3 или 4 квантов, но никак не 1>1/>2, 2>17/>52, √2 или π квантов. Это, конечно, далеко не все, что есть в квантовой механике; ее саму невозможно было бы разработать без наиболее мощных средств самого современного анализа. Например, знаменитое волновое уравнение Шредингера записывается на традиционном языке дифференциального исчисления. Тем не менее арифметическая составляющая в квантовой механике несомненно присутствует, тогда как в классической механике ее практически вовсе нет.
Основания классической физики — физики Ньютона и Эйнштейна — по сути своей аналитические, в математическом смысле. Они опираются на математический анализ, на понятия бесконечной делимости, гладкости и непрерывности, предела и производной, а также вещественных чисел. Не будем забывать, что, именно развивая и доводя понятие «предела» до логического конца, Ньютон и изобрел дифференциальное и интегральное исчисление, в конце концов ставшее содержанием большей части анализа.
Рассмотрим классическую задачу о движении одного тела вокруг другого по эллиптической орбите под действием силы их взаимного гравитационного притяжения. На некотором расстоянии (измеряемом вещественным числом r) от основного тела другое тело (спутник) имеет некоторую строго определенную скорость (выражаемую другим вещественным числом v). Связь между v и r дается точным математическим выражением; v есть в действительности функция от r, выражаемая так называемым уравнением vis viva[179], знакомым всем, кто изучал элементарную небесную механику:
где M и a — некоторые заданные числа, определяемые параметрами системы и начальными условиями — в частности, массами тел и т.п.
На практике, конечно, нельзя достичь бесконечной точности, требуемой для того, чтобы присвоить определенные вещественные значения величинам r и v. Пусть даже мы измеряем r с точностью до 10 или даже 20 знаков после запятой; но ведь для точного выражения вещественного числа требуется бесконечно много десятичных разрядов, а добиться такого мы не можем. Следовательно, для любой реальной орбиты имеется некоторая, пусть очень малая, ошибка при определении вещественных значений буквы r, а также соответствующая ошибка в вычисленных значениях буквы v. Это не играет большой роли: законы Кеплера уверяют нас, что все равно получится правильный эллипс, а математика уравнения vis viva говорит, что ошибка в 1 процент при определении r, как правило, приведет лишь к 0,5-процентной ошибке при вычислении значений v. Таким образом, ситуация управляема и предсказуема. Как говорят математики, «задача интегрируема».
Но это была очень простая задача. Почти все реальные физические проблемы сложнее, чем эта. Рассмотрим, например, случай трех тел, испытывающих взаимное гравитационное притяжение, — знаменитую «задачу трех тел». Можно ли найти ее решение в замкнутом виде, как для уравнения vis viva? Интегрируема ли она?
К концу XIX столетия стало ясно, что ответы таковы: «нет, не можем» и «нет, задача неинтегрируема». Единственный способ получить решение — использовать численные расчеты на компьютере, которые неизбежно носят приближенный характер.
На самом деле в 1890 году Анри Пуанкаре опубликовал статью, внесшую ясность в задачу трех тел: он четко показал, что эта задача не только не допускает решения в замкнутом виде, но и обладает куда более тревожным свойством — ее решения временами приобретают хаотический характер. Это значит, что даже малейшие изменения начальных условий в задаче — аналогов величин M и a в рассмотренном примере задачи двух тел — могут привести к изменению вычисленных орбит до неузнаваемости. Сам Пуанкаре заметил, что один набор условий дает «орбиты столь запутанные, что я даже и не пытался их изобразить».
Согласно распространенному мнению, работа Пуанкаре знаменует собой рождение современной теории хаоса. В течение нескольких десятилетий в теории хаоса не происходило ничего особенного, главным образом потому, что у математиков просто не было средств для обращения с числами — средств для перемалывания чисел в масштабах, требуемых при анализе хаоса. Ситуация изменилась, когда стали доступными компьютеры, и теория хаоса пережила второе рождение в 1960-х годах в трудах метеоролога Эда Лоренца, работавшего в Массачусетсом технологическом институте.[180] Теория хаоса в настоящее время представляет собой обширный предмет, охватывающий много различных более частных дисциплин из физики, чистой математики и вычислительной математики.
Важно осознать, что такая хаотическая система, как решение задачи трех тел, не обязана состоять из случайных движений (и, как правило, из них и не состоит). Прелесть теории хаоса заключается в том, что в хаотических системах присутствуют определенные структуры. В общем случае хаотическая система никогда не проходит снова по раз пройденным положениям, однако она повторяющимся образом воспроизводит указанные структуры; в их основе лежат некоторые правильные, но неустойчивые периодические орбиты, по которым система
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.