Программирование на языке Ruby - [195]

Шрифт
Интервал

, а остальные 14 (см. >anagrams.each) выполняются очень быстро.

Мы также видим, что >Hash#[] — дорогая операция (главным образом потому что часто выполняется); на 1.4 миллиона вызовов было потрачено почти 11 секунд.

Обратите внимание, что метод >readlines оказался чуть ли не в самом конце списка. Эта программа тратит время не на ввод/вывод, а на вычисления. На чтение всего файла ушло всего-то четверть секунды.

Но этот пример не показывает, в чем истинная ценность профилирования. В программе нет ни методов, ни классов. На практике вы, скорее всего, увидите свои методы среди системных. И тогда будете точно знать, какие из ваших методов находятся в числе первых 20 «пожирателей времени».

Надо ясно понимать, что профилировщик Ruby (видно, по иронии судьбы) работает медленно. Он подключается к программе во многих местах и следит за ее выполнением на низком уровне (причем сам написан на чистом Ruby). Так что не удивляйтесь, если ваша программа в ходе сеанса профилирования будет работать на несколько порядков медленнее. В нашем примере она работала 7 минут 40 секунд (460 секунд), то есть в 25 раз медленнее обычного.

Помимо профилировщика, есть еще один низкоуровневый инструмент — стандартная библиотека >benchmark, которая тоже полезна для измерения производительности.

Один из способов ее применения — вызвать метод >Benchmark.measure и передать ему блок.

>require 'benchmark'


>file = "/usr/share/dict/words"

>result = Benchmark.measure { File.readlines(file) }

>puts result

># Выводится: 0.350000 0.070000 0.420000 ( 0.418825)

Этот метод выводит следующую информацию:

• время, затраченное процессором в режиме пользователя (в секундах);

• время, затраченное процессором в режиме ядра (в секундах);

• полное затраченное время — сумму вышеупомянутых величин;

• время работы программы (по часам).

Для сравнения производительности отдельных участков удобен метод >Benchmark.bm. Передайте ему блок, а он сам передаст блоку объект формирования отчета. Если вызвать этот объект, передав ему метку и блок, то он выведет метку, а за ней временные характеристики блока. Пример:

>require 'benchmark'


>n = 200_000

>s1 = ""

>s2 = ""

>s3 = ""

>Benchmark.bm do |rep|

> rep.report("str << ") { n.times { s1 << "x" } }

> rep.report("str.insert ") { n.times { s3.insert(-1,"x") } }

> rep.report("str += ") { n.times { s2 += "x" } }

>end

Здесь мы сравниваем три способа добавить символ в конец строки, дающие один и тот же результат. Чтобы можно было получить более точные цифры, каждая операция выполняется 200000 раз. Вот что вышло:

>      user    system     total      real

>str <<      0.180000  0.000000  0.180000 ( 0.174697)

>str.insert  0.200000  0.000000  0.200000 ( 0.200479)

>str +=     15.250000 13.120000 28.370000 (28.375998)

Обратите внимание, что последний вариант на два порядка медленнее остальных. Почему? Какой урок можно извлечь отсюда?

Вы можете предположить, что оператор >+ почему-то работает медленно, но дело в другом. Это единственный из трех способов, который не работает с одним и тем же объектом, а каждый раз создает новый.

Стало быть, вывод такой: создание объекта — дорогая операция. Библиотека Benchmark может преподать много подобных уроков, но я все же рекомендую сначала заняться высокоуровневым профилированием.

16.7. Объекты печати

Метод >inspect (и вызывающий его метод >p) предназначен для вывода объектов в виде, понятном человеку. В этом смысле он является связующим звеном между тестированием и отладкой, поэтому рассмотрение его в этой главе оправданно.

Проблема в том, что результат, формируемый методом >p, бывает трудно читать. Из-за этого и появилась библиотека >pp, добавляющая одноименный метод. Рассмотрим следующий искусственный пример объекта >my_obj:

>class MyClass


> attr_accessor :alpha, :beta, :gamma


> def initialize(a,b,c)

>  @alpha, @beta, @gamma = a, b, с

> end


>end


>x = MyClass.new(2, 3, 4)

>y = MyClass.new(5, 6, 7)

>z = MyClass.new(7, 8, 9)

>my_obj = { x => y, z => [:p, :q] }


>p my_obj

Вызов метода >p печатает следующее:

>{#

> @gamma=4>=>#,

> #=>[:p, :q]}

Все правильно и в общем-то даже читаемо. Но… некрасиво. А давайте затребуем библиотеку >pp и воспользуемся предоставляемым ей методом >pp:

>require 'pp'


># ...


>pp my_obj

Теперь вывод приобретает такой вид:

>{#=>[:p, :q],

> #=>

>  #}

Мы получили хотя бы пробелы и разбиение на строки. Уже лучше. Но можно пойти еще дальше. Предположим, что в классе >MyClass определен специальный метод >pretty_print:

>class MyClass


> def pretty_print(printer)

>  printer.text "MyClass(#@alpha, #@beta, #@gamma)"

> end


>end

Аргумент printer передается вызывающей программой (или методом pp). Это аккумулятор текста, являющийся экземпляром класса >PP; мы вызываем его метод >text и передаем ему текстовое представление >self. Вот что получается в результате:

>{MyClass(7, 8, 9)=>[:p, :q] , MyClass(2, 3, 4)=>MyClass(5, 6, 7)}

Разумеется, можно настроить поведение по своему вкусу. Можно, например, печатать переменные экземпляра на разных строчках с отступами.


Рекомендуем почитать
Графика DirectX в Delphi

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вторая жизнь старых компьютеров

Сейчас во многих школах, институтах и других учебных заведениях можно встретить компьютеры старого парка, уже отслужившие свое как морально, так и физически. На таких компьютерах можно изучать разве что Dos, что далеко от реалий сегодняшнего дня. К тому же у большинства, как правило, жесткий диск уже в нерабочем состоянии. Но и выбросить жалко, а новых никто не дает. Различные спонсоры, меценаты, бывает, подарят компьютер (один) и радуются, как дети. Спасибо, конечно, большое, но проблемы, как вы понимаете, этот компьютер в общем не решает, даже наоборот, усугубляет, работать на старых уже как-то не хочется, теперь просто есть с чем сравнивать.


DirectX 8. Начинаем работу с DirectX Graphics

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.