Принцесса или тигр? - [19]
7. Заявляя, будто все, что говорит ее муж, правда, Глория тем самым соглашается с его утверждением о том, будто она сошла с ума. Другими словами, Глория неявно утверждает, что она сама лишилась рассудка! Однако такие высказывания (как мы выяснили в обсуждении, предшествующем решениям) могут делать только упыри, и поэтому Глория обязательно должна быть упырем. Таким образом, оба супруга являются упырями.
8. Допустим, что оба супруга — люди. Тогда их утверждения о том, будто оба они являются упырями ложны, откуда следует, что они — люди, лишившиеся рассудка. В свою очередь это должно означать, что их психическое состояние одинаково, и, следовательно, второе высказывание Бориса должно быть истинным, что оказывается совершенно невозможным для человека, лишившегося рассудка. Поэтому они никак не могут быть людьми, а значит, являются упырями (причем безумными).
9. Предположим, что супруги являются людьми, Нормальный человек никак не может утверждать, будто он (или она), а также кто-либо еще — оба сошли с ума; поэтому оба супруга должны быть людьми, лишившимися рассудка. Тогда перед вами окажутся лишившиеся рассудка люди, которые высказывают истинные утверждения, будто бы оба они сошли с ума, что невозможно. Поэтому они не могут быть людьми, а значит являются упырями. (При этом они могут оказаться упырями, как находящимися в здравом уме — которые лгут, когда утверждают, будто они сошли с ума, так и безумными — которые высказывают истину, говоря, что они сошли с ума. Вспомним попутно, что упыри, лишившиеся рассудка, всегда высказывают истинные суждения, хотя вовсе не собираются этого делать.)
10. Высказывания Луиджи и Мануэллы противоречат друг другу; поэтому один из них должен быть прав, а другой должен ошибаться. Таким образом, один из них высказывает истинные утверждения, а другой — ложные. Поскольку оба они либо люди, либо упыри, утверждение, что один из них лишился рассудка, обязательно должно оказаться истиной. Ведь если оба супруга находятся в здравом уме, тогда они должны высказывать либо истину — в случае, если они люди, либо ложь — если они упыри. Таким образом, Луиджи оказывается прав, утверждая, что по крайней мере один из них лишился рассудка. Значит, Луиджи высказывает истинные утверждения; в частности, он прав, когда говорит, что они оба люди. Итак, мы доказали, что оба супруга являются людьми (и к тому же, что Луиджи нормален, а Мануэлла лишилась рассудка).
11. Назовем жителя Трансильвании заслуживающим доверия, если он высказывает правильные утверждения, и не заслуживающим доверия, если утверждения, высказываемые им, ошибочны. Заслуживающими доверия трансильванцами могут быть либо люди в здравом уме, либо безумные упыри; не заслуживают доверия люди, лишенные рассудка, и упыри в здравом уме.
Пусть теперь А заявляет, что В находится в здравом уме и, кроме того, что В — упырь. Высказанные А утверждения либо оба истинны, либо оба ложны. Если они истинны, то В — упырь в здравом уме, откуда следует, что В не заслуживает доверия. С другой стороны, если оба утверждения, высказанные А, ложны, то В должен быть лишившимся рассудка человеком, что опять-таки означает, что В не заслуживает доверия. Поэтому и в том, и в другом случае (то есть когда оба утверждения А либо истинны, либо ложны) В оказывается личностью, не заслуживающей доверия. Отсюда следует, что оба утверждения, высказанные В, ложны, и А не может быть ни человеком, ни безумцем; следовательно, А должен быть упырем в здравом уме. Это означает также, что А не заслуживает доверия; поэтому оба высказывания А являются ложными, а значит В должен оказаться лишенным рассудка человеком. Итак, ответом будет:
А — упырь, находящийся в здравом уме,
В — человек, лишившийся рассудка.
Между прочим, эта задача является лишь одной из 16 задач аналогичного типа, которые можно сформулировать и которые все обладают единственным решением.
Комбинация двух произвольных высказываний, которые А может сделать относительно личности В (одно — по поводу состояния его психики и другое — относительно его природы, то есть является ли он человеком или упырем), с двумя любыми высказываниями В относительно личности А (одним — по поводу психического состояния А и другим — относительно его природы) — а для четырех таких высказываний существует 16 различных возможностей — будет однозначно определять характеристики личностей А и В. Например, если А заявляет, что В — человек и что В в здравом уме, а В утверждает, что А — упырь и к тому же лишился рассудка, то решением такой задачи будет: В — человек, находящийся в здравом уме, а А — безумный упырь. Или пусть А утверждает, что В находится в здравом уме и что В — упырь, а В в свою очередь говорит, что А лишился рассудка и тоже является упырем. Что представляют собой А и В в этом случае?
Ответ: А — нормальный человек, а В — находящийся в здравом рассудке упырь.
Сообразили ли вы, читатель, как решаются все 16 возможных задач и почему каждая из них имеет лишь единственное решение? Если нет, то давайте рассуждать так.
А может высказать 4 пары утверждений относительно личности В, а именно:
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.