Принцесса или тигр? - [17]
Как оказалось, трансильванская полиция задержала двух подозрительного вида субъектов, которые при опознании оказались довольно известными в этой стране лицами, и так как Крейг просил меня, чтобы имена и пол каждого из них не предавались гласности, то я буду называть их просто А и В. В противоположность десяти описанным выше разбирательствам в данном случае ничего не было известно заранее об отношениях между ними или их причастности к той или категории. Так, оба вполне могли оказаться упырями или же людьми, или, например, один из них мог оказаться упырем, а другой — человеком. Кроме того, они могли одновременно либо находиться в здравом уме, либо быть умалишенными или же один из них мог оказаться нормальным, а другой — безумным.
На допросе А сообщил, что В находится в здравом уме, а В показал, что А лишился рассудка. Одновременно А заявил, что В является упырем, а В в свою очередь стал уверять, что А — человек.
Что можно сказать по поводу личностей А и В?
12. Два трансильванских философа.
Довольный, что со всеми жуткими делами покончено, Крейг удобно расположился в зале ожидания, предвкушая, как через четверть часа наконец-то сядет в поезд. Ему не терпелось поскорее возвратиться в Лондон! Но тут он стал невольным свидетелем спора между двумя трансильванскими философами, которые с жаром обсуждали следующую проблему.
Пусть мы имеем двух трансильванских близнецов, о которых известно что один из них является находящимся в здравом уме человеком, а другой — лишившимся рассудка упырем. Допустим, что вы встречаете одного из них и хотите выяснить, кто же он такой. Можно ли выяснить это с помощью определенного числа вопросов, требующих ответа «да» или «нет»? Первый философ утверждал, что не существует такого набора вопросов, с помощью которых это можно было бы сделать, поскольку на любой поставленный вопрос каждый из близнецов должен дать тот же самый ответ, что и его брат. В самом деле, пусть имеется вопрос, правильный ответ на который гласит «да». В этом случае нормальный человек, зная, что ответом на поставленный вопрос является «да», правдиво ответит «да». В то же время упырь, лишившийся рассудка, будет считать, что правильным ответом является «нет», и поскольку он всегда лжет, то также ответит на поставленный вопрос словом «да». Подобным же образом, если правильным ответом на поставленный вопрос окажется «нет», то нормальный человек так и ответит «нет», а упырь, находящийся не в своем уме, вообразив, что правильным ответом является «да», солжет и также скажет «нет». Следовательно, различить братьев с точки зрения их внешнего вербального[4] поведения не представляется возможным, несмотря на то, что их головы будут работать совершенно по-разному. «Таким образом, — утверждает первый философ, — не существует вопросов, с помощью которых можно установить, кем же являются близнецы на самом деле (разве что, может быть, с помощью детектора лжи)».
Второй философ не соглашался. Правда, он не высказывал никаких доводов в поддержку своей точки зрения, а только говорил: «Позвольте мне задать несколько вопросов одному из братьев, и я скажу вам кто он!»
Крейгу, конечно, было бы интересно узнать, чем же завершился их спор, но тут как раз подали его поезд и он поспешил на посадку. Некоторое время Крейг, сидя в вагоне, размышлял, кто же из философов прав. Наконец он понял, что прав второй: в самом деле, встретив одного из близнецов, с помощью вопросов, требующих ответа типа «да — нет», вы действительно можете установить, с кем именно разговариваете, и без всякого детектора лжи. Остаются две проблемы:
1) Каково наименьшее число вопросов, которое нужно задать одному из близнецов?
2) И что еще интереснее, где кроется ошибка в рассуждениях первого философа?
Решения
Установим сначала одно правило, которое будет использовано в дальнейшем при решении нескольких задач. Вот оно: если житель Трансильвании утверждает, что он человек, то он обязательно должен находиться в здравом уме; если же трансильванец говорит, будто является упырем, то он лишился рассудка. Чтобы доказать это, будем рассуждать так. Пусть трансильванец утверждает, что он человек. При этом его утверждение может оказаться либо истинным, либо ложным. Если его высказывание истинно, то он действительно человек, а поскольку истинные суждения высказывают только нормальные люди, то, следовательно, он в здравом уме. Если же его утверждение ложно, то он на самом деле упырь, а поскольку ложные суждения высказывают только упыри в здравом уме (ведь безумные упыри всегда высказывают истинные суждения, как и люди в здравом уме), то он и в этом случае оказывается в здравом уме. Это доказывает, что если трансильванец заявляет, будто он человек, то он обязательно находится в здравом уме независимо от того, является ли он человеком на самом деле или не является.
Пусть теперь житель Трансильвании утверждает, будто он упырь. Что из этого следует? Если, к примеру, это его заявление истинно, то, значит, он на самом деле упырь, однако мы знаем, что истинные суждения высказывают лишь упыри, лишенные рассудка Точно так же, если его утверждение ложно, тогда он человек, а поскольку ложные утверждения высказываются только людьми, лишившимися рассудка, то он безумен. Таким образом, каждый трансильванец, заявляющий, что он упырь, — сумасшедший.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.