Принцесса или тигр? - [16]
В каждом из этих дел фигурировало по два обитателя Трансильвании. При этом заранее было известно, что один из них — человек, а второй — упырь, хотя и не было установлено кто же именно. По поводу состояния психики обитателей (исключая, впрочем, дело № 5) также не было никаких сведений.
1. Дело Люси и Минны. По первому делу проходили две сестры, которых звали Люси и Минна. Крейгу предстояло определить, кто из сестер является упырем. Как уже отмечалось ранее, относительно состояния их психики ничего известно не было. Ниже приведена запись беседы инспектора с сестрами.
Крейг (обращаясь к Люси). Расскажите что-нибудь о себе и вашей сестре.
Люси. Мы обе не в своем уме.
Крейг (обращаясь к Минне). Это правда?
Мина. Конечно же, нет!
Исходя из этих ответов, Крейг, к всеобщему удовлетворению сразу сумел догадаться, которая из сестер является упырем. Кто же это был?
2. Дело братьев Лугози. Следующее дело было связано с братьями Лугози. Обоих братьев звали Бела, только один из них был упырем, а второй нет. Братья высказывали следующие утверждения.
Бела-старший. Я человек.
Бела-младший. Я человек.
Бела-старший. Мой брат вполне нормален.
Кто из них является упырем?
3. Дело Михаэля и Петера Карлофф. В следующем расследовании перед инспектором вновь предстали два брата — на этот раз Михаэль и Петер Карлофф. Вот что они заявили.
Михаэль Карлофф. Я упырь.
Петер Карлофф. Я человек.
Михаэль Карлофф. Психическое состояние моего брата совпадает с моим. Кто из них упырь?
4. Дело де Роганов. В следующем расследовании оказались замешаны отец и сын де Роганы. Вот как выглядит запись беседы Крейга с ними.
Крейг (обращаясь к отцу). Вы оба в здравом уме или оба лишились рассудка? Или, может, вы отличаетесь друг от друга в этом отношении?
Отец. По крайней мере один из нас безумец.
Сын. Совершенно верно.
Отец. Но я-то, конечно, не упырь.
Кто из них является упырем?
5. Дело Карла и Марты Дракула. В последнем деле этой группы фигурировали двое близнецов — Карл и Марта Дракула (смею вас уверить, что в родстве со знаменитым графом они не состояли). Самое интересное в данном случае заключалось в том, что Крейгу было известно не только то, что один из них человек, а другой упырь, но и то, что один из близнецов в здравом уме, а другой лишился рассудка, хотя инспектор не имел ни малейшего представления, кто же именно. Вот запись их беседы.
Карл. Моя сестра — упырь.
Марта. Мой брат сошел с ума!
Кто из них является упырем?
В каждом из пяти следующих случаев оказалась замешанной некая семейная пара. Сейчас в Трансильвании (слышали вы об этом или нет) людям и упырям запрещено законом вступать в браки между собой, следовательно, описываемые семейные пары состоят либо из обычных людей, либо из упырей. Во всех перечисленных случаях, как и в задачах 1–4, ровным счетом ничего не известно о психическом состоянии любого из супругов.
6. Дело Сильвана и Сильвии Нитрат. Первое расследование этой группы было связано с делом Сильвана и Сильвии Нитрат. Как мы уже упоминали, оба они могут быть одновременно либо людьми, либо упырями. Вот запись их беседы с Крейгом.
Крейг (обращаясь к миссис Нитрат). Расскажите мне что-нибудь о вашей семье.
Сильвия. Мой муж — человек.
Сильван. Моя жена — упырь.
Сильвия. Один из нас вполне нормален, а другой сошел с ума.
Кто же они — люди или упыри?
7. Дело Джорджа и Глории Глобул. Следующий случай был связан с семейством Глобул.
Крейг. Расскажите мне что-нибудь о вашей семье.
Глория. Все, что говорит мой муж, правда.
Джордж. Моя жена свихнулась.
Крейг подумал, что утверждение Джорджа о собственной жене не слишком-то учтиво, тем не менее этих двух свидетельств ему оказалось вполне достаточно, чтобы установить истину.
Из кого же состоит данная семья — из людей или из упырей?
8. Дело Бориса и Дороти Вампир.
— Надеюсь, — сказал начальник трансильванской полиции инспектору Крейгу, — что фамилия подозреваемых не повлияет на результаты расследования.
Сами опрошенные дали следующие показания.
Борис Вампир. Мы оба упыри.
Дороти Вампир. Да, это так.
Борис Вампир. Состояние нашей психики совершенно одинаково.
Что это за семейная пара?
9. Дело Артура и Лилиан Суит. Следующее расследование было связано с делом семьи иностранцев (конечно, иностранцев по отношению к Трансильвании), которых звали Артур и Лилиан Суит. Они дали такие показания.
Артур. Мы оба сошли с ума.
Лилиан. Это правда.
Кем являются Артур и Лилиан?
10. Дело Луиджи и Мануэллы Бердклифф. Семейство Бердклифф дало следующие показания:
Луиджи. По крайней мере один из нас свихнулся.
Мануэлла. Это неправда!
Луиджи. Мы оба люди, а не упыри.
Кем являются Луиджи и Мануэлла?
11. Дело А и В.
Инспектор Крейг вздохнул было с облегчением, что все неприятные дела позади, и стал укладывать вещи для возвращения в Лондон, как вдруг к нему в номер неожиданно ворвался трансильванский чиновник и стал умолять инспектора задержаться хотя бы на день и помочь им разобраться с еще одним неожиданным делом. По правде говоря, перспектива задержаться Крейгу не очень-то улыбалась, но он всегда считал своим долгом оказывать посильную помощь, где возможно, и согласился.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.