Посвящение в радиоэлектронику - [25]
Ну а если период набегающих волн равен или близок к периоду собственных колебаний корабля? Вот тут-то все и начинается! Даже если волны не очень большие, корабль сильно раскачивает. Палуба медленно и «муторно» валится из-под ног куда-то вниз и вбок. И только ты приспособился к наклонному положению относительно стен каюты, надстроек, мачт и горизонта, как палуба вдруг подпирает снизу, несет тебя куда-то вверх (при этом внутри что-то сладковато-тошновато замирает), и ты снова без всякой надежды ждешь, когда же, наконец, кончится это изматывающее тело и душу движение! Надеюсь, что я не очень напугал вас, читатель, кратким описанием начинающейся морской болезни. Хотелось лишь подчеркнуть тот факт, что при совпадении периодов внешних и собственных колебаний отклик корабля максимален.
Качка корабля особенно сильна при резонансе.
Другой пример, и одновременно эксперимент. Возьмите грузик и привяжите его на нитку длиной 20…30 см. Держите нитку за свободный конец и покачивайте рукой из стороны в сторону, сначала очень медленно. Качание руки в этом опыте будет внешним воздействием. Следите, чтобы амплитуда внешнего воздействия во всех случаях была одинаковой — достаточно перемещать руку всего на 1…2 см в каждую сторону. При медленном перемещении руки грузик точно отслеживает внешнее воздействие, а нитка всегда остается вертикальной. Заметили этот результат? Теперь убыстряйте движение руки. Частота внешнего воздействия увеличивается, и амплитуда качаний маятника тоже увеличивается, хотя амплитуда внешнего воздействия осталась прежней! Наконец наступает момент, когда маятник раскачивается очень сильно. Амплитуда его колебаний намного превосходит амплитуду внешнего воздействия. Это явление называемся резонансом. Еще увеличьте частоту качаний руки. Амплитуда колебаний маятника заметно уменьшится, а если вы будете двигать рукой очень быстро, с высокой частотой, грузик будет оставаться практически на месте в силу своей инерции.
Экспериментальное наблюдение резонанса.
Проведя физический эксперимент, мы сделали только половину дела. Вторая половина, причем более важная, — осмысление и обработка результатов. Лучше и к тому же нагляднее изобразить результаты эксперимента графически, что мы сейчас и сделаем.
Отложим но горизонтальной оси частоту внешнего воздействия f, а по вертикальной оси — амплитуду колебаний маятника А. При очень низкой частоте внешнего воздействия (медленное движение руки) амплитуда колебаний А равна амплитуде внешнего воздействия В.
При резонансе, когда частота колебаний руки совпадает с собственной частотой маятника f>0, амплитуда колебаний максимальна, что хорошо видно на графике. И наконец, когда частота внешнего воздействия намного больше частоты собственных колебаний f >> f>0, амплитуда колебаний становится исчезающе малой. То, что мы получили на графике, называется кривой резонанса. Ее неоднократно экспериментально определяли для различных колебательных систем (маятников, мостов, кораблей, электрических цепей) и неоднократно рассчитывали теоретически.
Кривая резонанса.
Существует серьезная и весьма сложная наука теория колебаний, занимающаяся изучением различного рода колебательных движений в механике, гидроакустике, электронике и во многих других областях техники. Любопытно, что столь разнородные колебания описываются одними и теми же математическими уравнениями, что объясняется одинаковым (колебательным) характером движения. Разумеется, рассмотренный нами импровизированный маятник — грузик на ниточке — представляет для теории колебаний наипростейший случай.
Но мы опять увлеклись маятниками и чуть не забыли про электрический колебательный контур. Как в нем протекают процессы при воздействии внешнего напряжения? Да абсолютно так же!
Чтобы ввести в контур внешнее напряжение, придется разорвать один из проводов, соединяющих конденсатор с катушкой, и включить в этот разрыв источник внешней ЭДС В. Теперь у нас получился последовательный колебательный контур. Амплитуду колебаний будем наблюдать, измеряя напряжение А на конденсаторе контура. Это можно сделать с помощью осциллографа или вольтметра переменного тока. Собственная частота контура по-прежнему определяется индуктивностью и емкостью. Она рассчитывается по уже известной нам формуле Томсона
Колебательный контур с источником ЭДС.
Внимательный читатель скажет: «На странице 58 была другая формула!». На самом деле формула одна и та же, ведь частота колебаний обратно пропорциональна периоду f>0 = 1/Т. А вот частоту внешнего воздействия напряжения В — мы теперь будем изменять от нуля до очень больших значений. Нулевая частота означает отсутствие колебаний, т. е. постоянное напряжение. Естественно, что в этом случае напряжение на конденсаторе А в точности равно приложенному B, ведь катушка для постоянного тока представляет очень малое сопротивление, а конденсатор — очень большое. При нулевой частоте внешнего напряжения мы получаем начальную точку кривой резонанса. При частоте внешнего воздействия, близкой к собственной частоте контура, отклик контура максимален и переменное напряжение на конденсаторе имеет амплитуду, намного большую амплитуды внешней ЭДС. Это пик резонансной кривой. А при очень высоких частотах отклик контура стремится к нулю, что объясняется увеличением реактивного сопротивления катушки и уменьшением реактивного сопротивления конденсатора. Одним словом, резонансная кривая получается точно такой же, как и для механического маятника-грузика на веревочке.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.