Посвящение в радиоэлектронику - [26]
Возникает естественный вопрос: а насколько же амплитуда колебаний при резонансе А>резбольше исходной амплитуды внешнего воздействия В. Это зависит от одной очень важной характеристики колебательной системы — ее добротности Q. Добротность равна отношению А>рез/B. Чем меньше потери энергии колебаний внутри системы — на трение в маятнике, на преодоление током омического сопротивления катушки в контуре, тем выше добротность. О добротности мы уже говорили; она примерно равна числу колебаний, совершаемых в системе, «предоставленной самой себе», т. е. числу свободных затухающих колебаний.
Резонансные кривые контуров с различной добротностью (Q>1 > Q>2 > Q>3)
На графике показаны резонансные кривые колебательных систем с разной добротностью — высокой Q>1, умеренной Q>2и малой Q>3.
В радиотехнических колебательных контурах обычно стремятся получать максимальную добротность. Это выгодно в тех случаях, когда используется лишь верхний, самый острый участок резонансной кривой, например для настройки на частоту радиовещательной станции. У таких контуров определяют полосу пропускания 2Δf как расстояние (по частоте) между точками, где амплитуда колебаний падает до 0,7 резонансного значения. Полоса пропускания опять-таки связана с добротностью:
Например, чтобы контур, настроенный на частоту радиостанции второй Всесоюзной программы «Маяк» 549 кГц, имел полосу пропускания 11 кГц, его добротность должна быть равна 50. Здесь уместно отметить, что такая полоса пропускания контура обеспечивает передачу двух боковых полос АМ сигнала, соответствующих звуковым частотам до 5,5 кГц, что даст удовлетворительное воспроизведение музыкальных передач. Всегда ли надо стремиться получать столь высокую добротность контура? Оказывается, нет, и есть ряд электрических цепей, где высокая добротность вовсе не нужна. На них мы и остановимся.
Принцип «чем больше, тем лучше» справедлив не всегда. Высокая добротность не нужна кораблю как колебательной системе. Иначе, попади он в резонанс с набегающими волнами, его раскачает так, что начнется черпание воды бортами, зарывание носом под воду и тому подобные неприятные явления. Следовательно, при проектировании обводов подводной части корабля надо стремиться получать не только минимальное сопротивление движению вперед, что обычно и делается, но и максимальное сопротивление качке. И уж совсем высокая добротность не нужна рессорной или пружинной подвеске автомобиля. Допустим на минуту, что она равна десяти. Тогда, проехав ряд выбоин на асфальте глубиной 5 см, автомобиль может подпрыгнуть на полметра! Это произойдет, если толчки от выбоин попадут в резонанс с собственными колебаниями автомобиля.
Высокая добротность подвески может стать причиной аварии.
Предоставим читателю самому оценить «прелести» такой езды, но обратим его внимание на то, что подвеска автомобиля не мыслится без амортизаторов — специальных устройств, поглощающих энергию колебаний и снижающих добротность подвески автомобиля примерно до 1…3. Ну вот, а теперь после такой «механической» подготовки обратимся к электронике. Допустим, необходимо пропустить к усилителю некоторый диапазон звуковых частот. Сигнал поступает от радиоприемника, или тюнера, как теперь часто называют собственно радиоприемник без усилителя звуковой частоты. Передача сопровождается помехой-свистом высокого тона. Свист, естественно, надо бы ослабить. В этом случае поможет фильтр нижних частот. Его амплитудно-частотная характеристика соответствует резонансной кривой контура очень низкой добротности, близкой к единице. Все частоты от самых низких до резонансной частоты пропускаются фильтром без ослабления, а более высокие ослабляются. Но как понизить добротность контура до единицы?
Взять очень плохую катушку индуктивности с большим омическим сопротивлением? Или конденсатор с плохой изоляцией между пластинами? Конечно, это не лучший выход из положения. Ведь энергия сигнала будет бесполезно теряться в проводах катушки или в диэлектрике конденсатора. Гораздо выгоднее подключить к контуру полезную нагрузку, в нашем примере — входное сопротивление усилителя звуковой частоты. Тогда и добротность контура понизится, а поглощаемая энергия колебаний направится туда, куда нужно. Это как раз тот редкий случай, когда «и волки сыты, и овцы целы».
На рисунке показана схема простейшего Г-образного фильтра нижних частот.
Г-образный фильтр нижних частот.
Конденсатор с катушкой по-прежнему дружно образует колебательный контур, в разрыв одного из соединительных проводов подается входной сигнал, а параллельно конденсатору присоединена полезная нагрузка, в нашем примере — входное сопротивление усилителя звуковой частоты. Приведем очень простые соотношения, позволяющие выбрать величины входящих в фильтр элементов. Добротность контура, который теперь называется уже звеном фильтра, определяется соотношением сопротивления нагрузки и реактивного сопротивления конденсатора или катушки.
Почему «или»? Потому что на резонансной частоте реактивные сопротивления конденсатора и катушки равны друг другу! Напомним, что емкостное сопротивление конденсатора
О пути, который прошла Русь на протяжении XIII–XV веков, от политической раздробленности накануне татаро-монгольского нашествия до победы в Куликовской битве и создания централизованного Русского государства, рассказывают доктор исторических наук И. Б. Греков и писатель Ф. Ф. Шахмагонов. Виктор Иванович Буганов — известный советский ученый, доктор исторических наук, заведующий отделом источниковедения Института истории СССР Академии наук СССР. Его перу принадлежит более 300 научных работ, в том числе пять монографий, и научно-популярные книги.
Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».