Посвящение в радиоэлектронику - [23]
Особо высокой стабильностью к изменениям температуры и других параметров окружающей среды обладают кварцевые пьезоэлементы резонаторы. Поэтому генераторы с кварцевыми резонаторами широко используют для получения незатухающих колебаний высокой частоты. Видели кварцевые часы? Может быть, такие часы у вас уже есть? Их сердце-кварцевый генератор. Его высокочастотные колебания с помощью интегральных микросхем делят по частоте, получая таким образом секундные, минутные, часовые и другие импульсы. Они, в свою очередь, управляют ходом стрелки или показаниями цифрового индикатора. Нестабильность кварцевых часов, т. е. точность их хода, составляет около 3·10>-6. Это значит, что кварцевые часы «уходят» менее чем на одну секунду за несколько дней. Вот так еще раз, уже в наши дни, подтвердилась прозорливость Христиана Гюйгенса, выбравшего эталоном времени период колебании маятника!
Пьезокварцевый генератор есть на любой радиовещательной станции. Его называют задающим, поскольку он определяет частоту излучаемого станцией сигнала. Стабильность радиочастотных кварцевых генераторов составляет 10>-6… 10>-7, а при термостабилизации кварца и особо тщательном проектировании всего задающего генератора может достигать 10>-12. Кварцевые генераторы имеют много достоинств, но в то же время и один существенный недостаток — их нельзя перестраивать по частоте. На заре радиотехники пьезокварцевые резонаторы не использовались, да и соответствующей технологии производства их не было. Резонатором, т. е. устройством, совершающим колебания вполне определенной частоты, служил колебательный контур. Он и теперь очень широко применяется в любых радиотехнических устройствах: передатчиках, приемниках, резонансных усилителях и многих-многих других.
Колебательный контур состоит всего из двух элементов — катушки индуктивности L и конденсатора С. Поскольку у каждой из этих деталей всего по два вывода, логично соединить их между собой, как показано на рисунке. Получился параллельный колебательный контур.
Колебательный контур.
Конденсатор с катушкой очень дружны и действуют так. Если на конденсаторе оказывается некоторый заряд, он немедленно стекает через катушку, создавая в ней ток. Вокруг витков катушки возникает магнитное поле. Конденсатор отдал весь заряд, и ток в катушке достиг максимума. Но катушка в долгу не остается: возникшее магнитное поле поддерживает ток еще некоторое время (четверть периода колебаний) и этот ток перезаряжает конденсатор. Катушка тоже отдала все — энергия ее израсходована полностью, зато конденсатор снова зарядился и запас почти столько же энергии, сколько ранее отдал катушке. Снова он разряжается на катушку, формируя вторую полуволну, или второй полупериод колебания. Так взаимовыручка двух друзей, катушки и конденсатора, позволяет получать электрические колебания. Однако колебания будут затухающими из-за неизбежных потерь энергии на активном (т. е. действительном, реальном) сопротивлении проводов катушки, соединительных проводников, потерь в диэлектрике конденсатора и в материале, из которого изготовлен каркас катушки.
Энергия конденсатора отдается катушке и энергия катушки отдается конденсатору.
Для любого резонатора можно определить параметр, называемый добротностью и обозначаемый буквой Q (от англ. quality — качество, добротность). Чтобы долго не мудрствовать с использованием математики, определим добротность не совсем строго, зато физически просто и понятно: добротность численно равна числу колебаний, совершаемых резонатором в процессе их затухания. Если строже, то добротность равна числу колебаний, совершаемых до тех пор, пока их амплитуда не уменьшится примерно до 1/10 первоначального значения. Например, если механический маятник толкнули и он качнулся 15 раз, то его добротность и равна 15. Добротность механических маятников обычно составляет 10…200. Примерно такое же значение добротности может иметь и обычный радиочастотный колебательный LС-контур. А вот пьезокварцевые резонаторы обладают добротностью до нескольких сотен тысяч. Это, кстати, одна из причин, почему генераторы, стабилизированные кварцем, отличаются таким высоким постоянством частоты. Стабильность частоты генераторов, выполненных на LС-контурах, на несколько порядков хуже.
Скорость затухания колебаний в контуре зависит от добротности.
Скорость перезарядки конденсатора катушкой в колебательном контуре определяется их емкостью и индуктивностью, поэтому и период колебаний зависит только от этих величин. В соответствии с хорошо известной формулой Томсона
Т = 2π√(L·C).
Частота колебаний обратно пропорциональна периоду f = 1/Т.
Колебания в контуре происходят по синусоидальному закону так же, как и колебания механического маятника.
Частоту (говорят частоту настройки) колебательного контура можно изменять, изменяя емкость конденсатора или индуктивность катушки. Конденсатор переменной емкости есть в любом радиоприемнике. Вот как устроен сдвоенный блок конденсаторов переменной емкости (КПЕ) с воздушным диэлектриком.
Пакет статорных пластин неподвижен, а роторные пластины при вращении оси вдвигаются в зазоры между статорными, увеличивая таким образом емкость каждого из входящих в блок конденсаторов. Сдвоенным блоком КПЕ можно перестраивать по частоте одновременно два колебательных контура, что и делается в современных радиоприемниках. Настройка индуктивностью применяется значительно реже, главным образом потому, что индуктивность труднее изменять в широких пределах. Основной способ изменения индуктивности — это вдвигание внутрь катушки ферромагнитного сердечника.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.