Посвящение в радиоэлектронику - [22]

Шрифт
Интервал

. Вид получившегося сигнала показан на рисунке. Его максимальная амплитуда равна (1 + m)А, а минимальная - (1 — m)А. Параметр m называется коэффициентом модуляции.

При AM он не может быть больше единицы, поскольку уже при m = 1 минимальная амплитуда сигнала падает до нуля. Запишем выражение для AM сигнала:

= А(1 + m·cos Ωt)·cos ωt,

где А — амплитуда несущей; ω — угловая частота несущей; Ω — угловая частота модулирующего колебания.

Это выражение легко преобразовать с помощью известного тригонометрического тождества


Раскрывая скобки и используя это тождество, получаем


Из этого выражения видно, что напряжение сигнала является суммой трех синусоидальных колебаний; несущей (первое слагаемое), нижней боковой частоты (второе слагаемое) и верхней боковой частоты (третье слагаемое). Эти три колебания и составляют спектр сигнала при AM синусоидальным сигналом. Если же в модулирующем сигнале содержится несколько низкочастотных ко-

> засада:( В источнике OCR отсутствуют стр. 52, 53

И устройство, вполне пригодное для этой цели, нам уже встречалось. Вспомните простейший датчик углового положения фюзеляжа самолета. Если жесткий отвес с грузом на конце заставить колебаться подобно маятнику, то с движка потенциометра можно будет снять синусоидальный электрический сигнал. Есть только два существенных «но», из-за которых подобные устройства не нашли практического применения.



Преобразователь колебаний маятника в электрический сигнал.


Первое «но» — частота генерируемых колебаний оказывается слишком низкой. Сколько раз в секунду может качнуться маятник?

Два, три, от силы десять, если маятник достаточно короткий. А нужны гораздо большие частоты. И второе «но» — однажды запущенный маятник покачается-покачается да и остановится. Колебания с постоянно уменьшающейся до нуля амплитудой называются затухающими. Обычно же требуются колебания с неизменной амплитудой, то есть незатухающие. Нельзя же, например, допустить, чтобы громкость приема радиостанции постепенно уменьшалась и сходила на нет. Следовательно, необходимо устройство, подталкивающее наш маятник в такт его собственным колебаниям. Такое устройство есть в любых часах. Масса гирь или сила пружины через анкерное колесо периодически подталкивают маятник, и часы не останавливаются. Воистину это гениальное изобретение — часы — является механическим аналогом электронного генератора незатухающих колебаний.

Чтобы повысить частоту, надо уменьшить размеры маятника. При этом удобнее использовать для возвращения маятника в исходное положение после каждого колебания не силу тяжести, а силу упругости. Так устроен пружинный маятник. Его частота повышается с увеличением упругости подвеса и уменьшением массы груза. Тогда можно и совсем отказаться от пружины — пусть работает упругость самого материала грузика! Образец такого маятника — упругий стерженек или пластинка, колеблющаяся по толщине. Остается открытым вопрос, как заставить пластинку колебаться. Можно ударом. Но колебания будут затухающими. Играли когда-нибудь на ксилофоне? Если даже и не играли, то представляете себе устройство этого музыкального инструмента. Удар молоточка по пластине вызывает звук, а высота тона соответствует частоте колебаний пластинки. Обратите внимание: чем меньше пластинка, тем выше частота создаваемых ею колебаний, тем выше и тон звучания. А частота колебаний упругой пластинки при размерах ее менее сантиметра будет лежать в неслышимом ультразвуковом диапазоне и может достигать десятков миллионов колебаний в секунду (десятков мегагерц). Как же построить анкерное колесо, пригодное для столь высоких частот? К счастью, природа сама позаботилась о том, чтобы изобретатели не выдумывали подобных «микроколес».



Пружинный маятник и колебания стержня по толщине.


Некоторые кристаллические вещества, в том числе кварц, сегнетова соль и ряд искусственных керамик, обладают пьезоэлектрическим эффектом. Если кристалл сжать, на его поверхности появятся электрические заряды. Растянуть — снова появятся заряды, но уже противоположного знака. Как это объяснить физически? Да очень просто, на житейском примере. Из подошвы вашего ботинка выступает гвоздь, и ходить стало больно при каждом шаге гвоздь колется. Вы вооружаетесь молотком и плоскогубцами, снимаете ботинок и… никакого гвоздя не обнаруживаете. Надели ботинок снова, наступили — колет! Причина очевидна: гвоздь выступает только под тяжестью ноги, сжимающей подошву, которая при этом деформируется, уменьшается по толщине. Пьезокристалл содержит решетку положительных ионов и такую же решетку отрицательных ионов, как бы вложенную в первую. При деформации кристалла положительные ионы выступают наружу, подобно гвоздям из подошвы, создавая на этой поверхности положительный заряд. А на противоположной поверхности выступают отрицательные ионы, создавая такой же заряд противоположного знака. Изменился знак деформации (сжали, вместо того чтобы растягивать) изменился и знак зарядов на поверхностях кристалла.



Колебания пьезокристалла.


При колебаниях пьезоэлемента (так называют пьезоэлектрическую пластинку, вырезанную из кристалла) на поверхности пластинки появляется переменный заряд, изменяющийся по синусоидальному закону с частотой ее колебаний. Заряд можно снять, усилить специальным усилителем электрических колебаний и снова подвести к пластинке. Вступит в действие обратный пьезоэффект при сообщении пластинке заряда она деформируется. Таким образом, в пластинке пьезоэлектрика можно поддерживать незатухающие колебания.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.