Понятная физика - [4]

Шрифт
Интервал

Рассмотрим ещё один пример: беспилотный самолет c массой m летит со скоростью v на высоте h над Землей. Значит, он имеет кинетическую энергию mv>2/2 и потенциальную энергию Ph Сумма кинетической и потенциальной энергий называется полной механической энергией (Е) тела: E = E>k + E>p (2.4).

§ 3. Сила и вес

На первый взгляд все знают, что такое сила. Так, в популярном американском учебнике «Физика» авторы Эллиот и Уилкокс на вопрос «что такое сила» отвечают: «Сила это толчок или тяга» (стр. 50). Согласиться с этим невозможно. В технике есть термин «сила тяги» (например, трактора). Если подставим толкование силы из иностранного учебника в наш технический термин, получим выражение «тяга тяги». Это звучит абсурдно.

В традиционных учебниках также встречаются выражения типа сила инерции, центробежная сила, сила противодействия и т. п. Там же можно прочитать, что сила это напор, натиск, в общем, смотри выше. Возьмём, к примеру, выражение «сила инерции», которое встречается всюду. Его надо понимать так, что существует «инерция», у которой есть «сила». Инерцией называют свойство изолированного от внешних полей тела сохранять свою скорость. Это отвечает закону сохранения энергии. Но что такое «сила инерции» для изолированного тела? Может, «тяга инерции»? Откуда «тяга», если тело ничто не тянет? Может, «напор инерции»? Но изолированное тело ни на что не напирает. Как измерять силу инерции изолированного тела? Ответа нет нигде.

Думается, нам не стоит тратить время, пытаясь объяснить необъяснимое. Мы должны сказать следующее: коль скоро физики вот уже триста лет не могут придумать определение силы, значит, сила это не физическая величина, а математическая. Иначе говоря, сила – это количественная характеристика движения. Тогда достаточно определить силу математически и принять её как математический объект. Разберем это на примере из гравитации.

Известно, что вес Р – это проявление силы притяжения (F). Можно написать F = P без переходного коэффициента, так как силу тоже измеряют в ньютонах. Вспомним, гиря весом Р на высоте h имеет энергию E>p=Ph (3.1). Тогда: F = P = E>p/h (3.2). Если h = 1 м, то из (3.2) следует, что F = Е>p. То есть, сила численно равна энергии, переданной телу при его подъёме на 1 м. Это подтверждает мысль, что сила определяет энергию, передаваемую от тела к телу при их взаимодействии. Если энергию передавать быстро, увеличивается скорость передачи энергии. Можно сказать, что сила – это величина, характеризующая темп передачи энергии от тела к телу. Мы говорим «темп», так как потенциальная энергия зависит от местоположения тела, которое определяется в метрах. Кинетическая энергия передаётся путем изменения скорости, которая зависит от времени. В этом случае можно сказать, что сила – это величина, характеризующая скорость передачи энергии.

Из космических исследований известно, что на Луне вес тела в шесть раз меньше, чем на Земле. Это значит, что сила притяжения Луны в шесть раз меньше, чем у Земли. Введем для поля тяготения коэффициент гравитации g следующим образом: P = gm (3.3). Уравнение (3.3) показывает, что с увеличением гравитации вес тела растёт. Из геофизических измерений известно, что у поверхности Земли величина g равна в среднем около 10 м/с>2. Значит, для Луны коэффициент гравитации g равен примерно 1.6 м/с>2. Из (3.3) следует, что g = P/m (3.4). С учётом (3.4) можно написать, что сила гравитации F = gm (3.5). Тогда потенциальную энергию тела в поле гравитации g можно выразить как E>p = Ph = Fh = mgh (3.6).

§ 4. Превращения энергии

Рассмотрим, как потенциальная энергия переходит в кинетическую при движении тела в поле гравитации. Возьмём уравнение для полной энергии: Е=Е. В примере с аэростатом потенциальная энергия баллона в начале опыта была равна E>p = mgh, а кинетическая равна нулю (v=0). После того, как баллон упал на землю, его потенциальная энергия стала равна нулю, так как h=0. Зато в момент падения кинетическая энергия баллона стала максимальной: Е = mv>2/2. Таким образом, при падении в поле гравитации потенциальная энергия тела превращается в кинетическую энергию в соответствии с законом сохранения энергии. Заметим, что на высоте s=h/2 потенциальная энергия mgs падающего баллона в точности равна половине полной энергии mgh. Значит, на высоте s потенциальная энергия Е>рs равна кинетической энергии Е>кs. Тогда мы можем написать: Е/2 = Е, или Е/2 = mv>2/2, или Fs = mv>2 (4.1). Если на высоте s скорость v приравнять к s/t (средняя скорость на пути от высоты h до высоты s), мы можем записать уравнение (4.1) в виде Fs = ms>2/t>2. Сокращая на s, получаем: F = ms/t>2 (4.2).

Выражение s/t>2 есть не что иное, как ускорение из (2.1): а = s/t>2 (4.3). Подставляя (4.3) в (4.2) получим в итоге уравнение: F = ma (4.4).

Уравнение (4.4), которое позволяет вычислить силу F, нужную для придания ускорения a телу с массой m, называют вторым законом Ньютона.

К примеру, если у новогодней шутихи масса равна 0.2 кг и она взлетает в небо с ускорением 5 м/с>2, это значит, что сила тяги ракеты равна: F = 0.2*5=1 (Н).

В стандартном учебнике уравнение (4.4) дают в готовом виде. Считается, что оно получено опытным путём. Мы вывели уравнение (4.4) из закона сохранения энергии (2.4), который, тоже является обобщением опытных данных.


Еще от автора Игорь Джавадов
Мишень для левши

Однотомник фантастики уральского автора И. Джавадова включает два рассказа и роман. Эти произведения, написанные в разные годы, объединяет присущее автору чувство юмора и доброжелательное отношение к своим героям, которых он отправляет то в другую галактику к мыслящим артроподам, то в юрский период к разумным динозаврам, настоящим ковбоям мезозоя. Произведения написаны в жанре “твердой” фантастики. Хотя некоторые идеи автора расходятся с общепринятым мнением, нельзя утверждать, что они противоречат современной науке.


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Знание-сила, 1997 № 03 (837)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.