Поиски истины - [8]

Шрифт
Интервал

Физика элементарных частиц категорически изменилась за последнее время без смены основных принципов физического описания.

Но даже коренная научная революция не отменяет, а только пересматривает, переосмысливает прежние соотношения и устанавливает границы их применимости. В науке существует «принцип соответствия» - новая теория должна переходить в старую в тех условиях, при которых старая была установлена.

Стабильность науки - важнейшее ее свойство, иначе приходилось бы начинать все заново после каждого открытия.

Физики отказались от представления о тепле как о жидкости - теплороде, - перетекающей от нагретого тела к холодному, после того как была установлена эквивалентность механической и тепловой энергии («механический эквивалент тепла»). Но законы теплопроводности, установленные во времена теплорода, не изменились.

В начале XX века атомистическая теория вещества стала доказанной и общепризнанной истиной, но все соотношения «макроскопических» наук - термодинамики, гидродинамики, теории упругости - остались без изменений. Эти науки продолжали предсказывать новые явления, выяснились лишь границы их применимости.

Тогда же, в начале века, произошел переворот в наших взглядах на пространство, время и тяготение, но наука «малых скоростей» сохранилась не только в смысле принципа соответствия - она продолжала развиваться, и практически вся современная техника - ЭВМ, телевидение, радио, космические полеты, современные химия и биология - обходится ньютоновыми представлениями о пространстве и времени.

Хороший пример переплетения старых и новых идей дает история эфира (см. с. 198).

В XIX веке его наделяли сложнейшими противоречивыми свойствами для объяснения законов распространения света в пустоте и в движущихся телах. Теория относительности разрешила все противоречия эфира. Более того - исчезла необходимость в этом понятии. Однако позже выяснилось, что пустота - бывший эфир - носитель не только электромагнитных волн; в ней происходят непрерывные колебания электромагнитного поля («нулевые колебания»), рождаются и исчезают электроны и позитроны, протоны и антипротоны и вообще все элементарные частицы. Если сталкиваются, скажем, два протона, эти мерцающие («виртуальные») частицы могут сделаться реальными - из «пустоты» рождается сноп частиц.

Пустота оказалась очень сложным физическим объектом. По существу, физики вернулись к понятию эфира, но уже без противоречий. Старое понятие не было взято из архива - оно возникло заново в процессе развития науки. Новый эфир называют «вакуумом» или «физической пустотой».

История эфира на этом не закончилась.

Теория относительности строится на предположении, что в нашем мире не существует выделенной системы координат и поэтому не существует абсолютной скорости, мы наблюдаем только относительные движения. Но с открытием реликтового излучения такая система координат появилась - это система, в которой кванты реликтового излучения распределены по скоростям сферически симметрично, как частицы газа в неподвижном ящике. (Реликтовое излучение - это электромагнитные волны, возникшие примерно 20 миллиардов лет назад, когда Вселенная была горячей. Исследуя реликтовое излучение, можно увидеть Вселенную, какой она была на ранних стадиях развития.) В «новом эфире» есть абсолютная скорость, тем не менее следствия теории относительности сохраняются с колоссальной точностью в согласии с принципом соответствия.

История эфира продолжается.

Применение квантовой механики к теории тяготения привело к важнейшему результату - кроме нулевых колебаний элементарных частиц, о которых мы только что говорили, в вакууме существуют нулевые колебания поля тяготения. Но, как следует из теории тяготения Эйнштейна, изменение гравитационного поля приводит к изменению геометрических свойств пространства. Отношение длины окружности к радиусу колеблется около значения 2л, соответствующего евклидовой геометрии. Для больших радиусов эти колебания практически не наблюдаемы, но чем меньше масштаб расстояний, тем больше амплитуда «дрожаний» геометрии вакуума.

В последнее время физики-теоретики пытаются выяснить взаимное влияние этих колебаний геометрических свойств и нулевых колебаний элементарных частиц. Эйнштейн надеялся объединить тяготение и электродинамику, а такая теория пошла бы гораздо дальше - она означала бы «сверхобъединение» всех известных физических взаимодействий.

Романтика и поэзия науки не в разрушении старого, а в переплетении и проникновении друг в друга новых и прежних идей. В науке, как и в искусстве, новое не отменяет красоты старого, а дополняет ее.

Итак, наука оберегает свои завоевания. Но как устанавливаются научные истины? Один из важнейших методов - проверка теоретических предсказаний опытом.

«Штатские люди любят судить о предметах военных, даже фельдмаршальских, а люди с инженерным

образованием судят больше о философии и политической экономии» (Ф. Достоевский)

«Эксперимент есть эксперимент, даже если его поставили журналисты», - было сказано в одном из наших журналов по поводу встречи редакции с экстрасенсом, с «медиумом», как сказали бы сто лет назад. Я не встретил ни одного экспериментатора, который бы не рассмеялся, услышав эту фразу. Самое тонкое и сложное - постановка недвусмысленного эксперимента, и здесь необходим строжайший профессионализм.


Еще от автора Аркадий Бенедиктович Мигдал
Отличима ли истина от лжи

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Знание-сила, 1997 № 04 (838)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2008 № 10 (976)

Ежемесячный научно-популярный и научно-художественный журнал.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.