Подводный флот специального назначения - [6]
Различают две формы кислородного отравления: легочную и судорожную. Легочная форма кислородного отравления развивается при длительном (более 10 ч) вдыхании сжатого воздуха, т. е. воздуха, в котором парциальное давление кислорода несколько повышено (до 2 атмосфер). Наиболее опасна судорожная форма кислородного отравления, наступающая при парциальном давлении кислорода, превышающем 3 атмосферы.
Парциальное давление кислорода в 3 атмосферы наступает на глубине около 140 м, значит, и глубина погружения человека в водолазном снаряжении, вентилируемом сжатым воздухом, ограничивается 140 м.
Несколько слов о насыщении организма водолаза индифферентными газами, в основном азотом. Индифферентные газы не участвуют в жизненных процессах и находятся в крови и тканях человека в растворенном состоянии. Количество растворенного в организме человека индифферентного газа пропорционально его парциальному давлению. С увеличением парциального давления индифферентного газа растворимость его в крови человека увеличивается. Растворенный газ разносится с кровью по всему организму, переходит в ткани и растворяется также и в них. Возвращаясь в легкие, кровь вновь насыщается газами и разносит их по всему организму. Так происходит до полного насыщения тканей индифферентными газами.
При понижении парциального давления газа описанный процесс идет в обратном порядке. Однако скорость насыщения и рассыщения неодинакова. Если насыщение организма газами происходит безболезненно, то при понижении давления (особенно при быстром понижении) газ из тканей выделяется так интенсивно, что кровь не успевает выносить его в легкие, и он задерживается в ней в виде мелких газовых пузырьков, которые, двигаясь вместе с током крови, закупоривают кровеносные сосуды, в результате чего может наступить паралич и даже смерть. Эту болезнь, называющуюся кессонной, можно предотвратить, совершая подъем водолаза с глубины постепенно, с остановками, во время которых газовые пузырьки растворяются в крови, и последняя успевает выносить газ в легкие. Постепенное снижение давления на организм водолаза называется декомпрессией.
Из приведенного выше анализа видно, что возможности спуска водолаза на большие глубины ограничены. Усиленные исследования, которые проводятся в США и в других капиталистических странах, показывают, что, применяя для дыхания различные смеси, человек может погружаться лишь на глубину до 200 м.
Правда, в последние годы отдельные исследователи погружались и на большие глубины. В связи с этим следует упомянуть о погружениях Ганса Келлера — молодого швейцарского математика, который совместно с известным врачом-физиологом Альбертом Бюльманом разработал новую теорию азотного наркоза. В противоположность общепринятой теории, согласно которой наркоз вызывается чрезмерным насыщением крови азотом, Келлер и Бюльман полагают, что причиной его является соединение кислорода высокого давления с большим количеством углекислого газа в крови. Основываясь на этом предположении, Келлер и Бюльман разработали теорию применения новых газовых смесей, а также некоторые технические приемы спусков и подъемов водолаза, благодаря которым Келлеру удалось сделать ряд погружений на глубину до 300 м; причем подъем с этих глубин производился в рекордно быстрое время. Так, подъем с глубины 155 м занял у Келлера всего 45 мин, в то время как по классической схеме декомпрессии он должен был длиться около 7 ч.
Исследования последних лет позволяют надеяться, что существуют неизведанные еще пути, следуя которыми, человек может проникать все дальше и дальше в глубь подводного мира.
Итак, глубина погружения в водолазном снаряжении ограничена вследствие физиологического воздействия давления воды на организм человека. Стало быть, достигнуть больших глубин можно лишь в жестких замкнутых камерах, способных выдерживать огромные давления. Поэтому подлинные глубоководные погружения стали возможны только в начале двадцатого столетия, когда человек сумел спроектировать и построить замкнутые, достаточно прочные камеры.
Первой близкой к современным камерой, по-видимому, следует считать подводную камеру Ганса Гартмана, которую он построил в 1911 г. Камера Гартмана была оборудована специальной оптической системой для фотографирования на расстоянии до 38 м. Для освещения камеры применялись аккумуляторные батареи. Углекислота, выделяемая при дыхании человека, поглощалась специальным прибором. В этой камере, спускаемой и поднимаемой на стальном тросе, Гартман сумел достичь глубины 458 м.
Следующей подводной камерой был советский гидростат, сконструированный в 1923 г. инженером Г. И. Даниленко (рис. 2).
Рис. 2. Гидростат Даниленко.
Корпус гидростата — клепаный цилиндр со сферическими донышками. Он имел иллюминатор с наружным освещением для наблюдения. Для аварийного всплытия в нижней части гидростата размещался балласт, привод отдачи которого приводился в действие изнутри камеры.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.