Подводный флот специального назначения - [7]
При помощи гидростата Г. И. Даниленко производились поиски затонувших кораблей. Так, в Черном море был найден английский корабль «Черный принц», а в Финском заливе — канонерская лодка «Русалка», затонувшая в 1893 г.
Определенный интерес представляет подводная камера, сконструированная в США в 1925 г. и рассчитанная на погружение до глубин 1000 м. Камера представляла собой двухстенный стальной цилиндр диаметром 75 см, под днищем которого находился балласт, удерживаемый электромагнитами. В воде камера могла вращаться вокруг вертикальной оси и наклоняться на небольшой угол для осмотра дна, что осуществлялось с помощью трех гребных винтов. Камера была оборудована приспособлениями для захвата морских организмов, просверливания отверстий в бортах судов и закладывания подъемных крюков. Внутри камеры размещались приборы для определения глубины, компас, электрические грелки, хронометр, фотоаппаратура, термометры для измерения температуры воды, телефон для связи с поверхностью. Экипаж из 2 человек мог находиться в камере под водой в течение 4 ч. Камера использовалась для исследования древних городов Карфагена и Позиллино, а также для отыскания затонувших кораблей. На глубину 1000 м эта камера так и не опускалась.
В 1929 г. американцы Д. Бартон и В. Биб, использовав опыт постройки предыдущей камеры, создали глубоководную камеру, названную ими батисферой[3]. В этой камере отважные исследователи опустились в 1930 г. в Атлантическом океане у Бермудских островов на глубину 240 м.
После значительного числа пробных погружений без людей и введения ряда усовершенствований в конструкцию и оборудование батисферы 15 августа 1934 г. Биб и Бартон совершили свое известное погружение на глубину 923 м. Эта глубина лимитировалась тросом, имевшим длину 1067 м. Следует отметить, что наблюдения, выполненные исследователями во время спуска, сыграли определенную роль для дальнейшего изучения морских глубин.
В 1937 г. в нашей стране под руководством академика Ю. А. Шиманского был спроектирован гидростат, являвшийся крупным научным и техническим достижением для своего времени.
Гидростат, предназначенный для спусков на глубину до 2500 м и рассчитанный на пребывание в нем двух человек в течение 10 ч, был оборудован научно-исследовательскими приборами общим весом 600 кг. Для визуального наблюдения, а также для производства фото- и киносъемок в корпусе гидростата имелись два иллюминатора. Погружение и всплытие гидростата осуществлялось самостоятельно. Для погружения в уравнительную цистерну принималась вода; регулировкой приема воды или ее откачки достигалось погружение или всплытие с желаемой скоростью. При необходимости всплытие гидростата могло быть ускорено отдачей двух твердых грузов весом до 150 кг. Для увеличения скорости погружения к гидростату дополнительно подвешивался груз на тросе длиной около 100 м, который одновременно предохранял камеру от ударов о дно моря или подводные препятствия.
Перемещение гидростата в горизонтальной плоскости осуществлялось с помощью гребного винта, приводимого в действие электрическим мотором мощностью 2 л. с. Скорость горизонтального перемещения составляла около 0,3 м/сек на расстояние до 3 км. Для вращения гидростата вокруг вертикальной оси служил инерционный механизм, состоящий из массивного маховика на вертикальной оси, приводимого во вращение электромотором мощностью 0,4 л. с. со скоростью около 45° в минуту. Вес гидростата составлял 10,5 т; его опускание на глубину 2500 м осуществлялось за 20 мин, а подъем с этой глубины за 10–15 мин.
В течение последних 20 лет гидростаты строились в ряде стран. Так, в 1944 г. в СССР был построен гидростат ГКС-6, автором проекта которого был инженер А. 3. Каплановский. В Японии в 1951 г. был построен гидростат «Куро-Сио», а в Италии в 1957 г. вступил в строй гидростат конструкции Галеацци. Построен был также гидростат и во Франции.
Однако зависимость от корабля-носителя и необходимость опускания на трос-кабеле ограничивают использование гидростатов и батисфер и ставят под сомнение надежность их эксплуатации. Поэтому ученые и конструкторы считают, что ныне назрела необходимость в создании автономных подводных камер.
Проблема конструирования подобной камеры была решена швейцарским ученым Огюстом Пикаром[4]. Субсидируемый Бельгийским национальным фондом научных исследований, Огюст Пикар построил в сентябре 1948 г. батискаф ФНРС-2, способный погружаться на большие глубины.
В 1953 г. в Италии при непосредственном участии Огюста Пикара был построен новый батискаф «Триест», с помощью которого удалось достигнуть глубины 10 911 м.
В последние годы за рубежом проектируются и строятся самые разнообразные подводные камеры, отличающиеся друг от друга по своему назначению и техническим данным. В целях систематизации изложения материала авторы сочли необходимым классифицировать подводные камеры по наиболее существенным признакам (рис. 3):
Рис. 3. Классификация подводных камер.
А. В зависимости от глубины погружения:
— на подводные камеры больших глубин (глубоководные камеры), погружающиеся на 200 м и более
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.