По ту сторону кванта - [70]
Он был первым читателем тогда еще рукописной статьи Бора о строении атомов. Ознакомившись с ней, Резерфорд с присущей ему прямотой и резкостью спросил Бора: «А откуда электрон, сидящий на n-й орбите, знает, куда ему надо прыгнуть: на k-ю или на j-ю орбиту?» Тогда, в 1913 году, Бор ничего не смог ответить Резерфорду. И лишь теперь, после работы трех поколении физиков, вопрос прояснился до такой степени, что даже мы в состоянии в нем разобраться.
Электрон вовсе ничего «не знает» заранее — он лишь подчиняется законам квантовой механики. Согласно этим законам для электрона в любом квантовом состоянии (например, в состоянии с квантовым числом n) всегда существует строго определенная вероятность перейти в любое другое состояние (например, в состояние k). Как всегда, вероятность W>nk перехода n — >k — это число, значение которго зависит от выбора пары квантовых состояний n и k. И если мы переберем всевозможные комбинации номеров n и k, то получим квадратную таблицу чисел W>nk. Мы уже знаем, что такая таблица называется матрицей. И матрица эта представляет внутреннее состояние атома.
Только теперь мы можем оценить интуицию Гейзенберга, который, ничего не зная о законах вероятности, управляющих квантовыми процессами в атоме все-таки правильно почувствовал их особенности и ввел свои матрицы. {X>nk} и {P>nk}. Как выяснилось немного позже, через эти матрицы матрица вероятности W>nk выражается довольно просто. А матрицы Гейзенберга, в свою очередь, легко вычислить, решив уравнение Шредингера.
Рассуждения, которые мы только что проследили, несмотря на свою простоту, весьма плодотворны. Например, с их помощью довольно легко можно объяснить, почему в желтом дублете D-линии натрия — линия D>2 в два раза интенсивнее, чем линия D>1.
Более того, последовательно используя уравнения квантовой механики, можно выяснить и более тонкие особенности строения этих линий, например законы изменения интенсивности внутри их самих. Но все эти радости доступны только специалистам.
ПРИЧИННОСТЬ И СЛУЧАЙНОСТЬ, ВЕРОЯТНОСТЬ И ДОСТОВЕРНОСТЬ
Вероятностная интерпретация квантовой механики очень многим пришлась не по душе и вызвала многочисленные попытки возврата к прежней, классической схеме описания. Это стремление во что бы то ни стало использовать старые знания в новых условиях по-человечески понятно, но ничем не оправдано. Оно напоминает желание отставного солдата осмыслить все многообразие жизни с позиций строевого устава. Безусловно, его возмутит беспорядок на танцплощадке, и довольно трудно будет объяснить ему, что там действуют несколько иные законы, чем на армейском плацу.
Еще не так давно недобросовестные интерпретаторы квантовой механики с подозрительным рвением пытались отменить ее только на том основании, что она не укладывалась в рамки ими же придуманных схем. Они возмущались «свободой воли», которая якобы дарована электрону, шельмовали соотношение неопределенностей и всерьез доказывали, что квантовая механика — бесполезная наука, коль скоро она толкует не о реальных событиях, а об их вероятностях. Те, кто внимательно проследил предыдущие рассуждения, понимают всю вздорность подобных обвинений. Но даже те, кто относится уважительно к теории атома, не всегда четко сознают, как понимать причинность атомных явлений, если каждое из них — случайно; и насколько достоверны ее предсказания, если все они основаны на понятии вероятности.
Житейское понятие причинности: «Всякое явление имеет свою причину» — не требует объяснений, но для науки бесполезно. Причинность в науке требует строгого закона, с помощью которого можно проследить последовательность событий во времени. На языке формул этот закон принимает вид дифференциального уравнения, которое называют уравнением движения. В классической механике такие уравнения — уравнения движения Ньютона — позволяют предсказать траекторию движения частицы.
Именно такая бегло очерченная нами схема объяснения и предсказания явлений природы всегда составляла идеал причинного описания в классической физике. Она не оставляет места для сомнений и кривотолков, и, чтобы подчеркнуть это ее качество в дальнейшем, причинность классической физики назвали детерминизмом.
Такой причинности в атомной физике нет. Но там есть своя — квантовомеханическая причинность и свой закон — уравнение Шредингера. Он даже более могуществен, чем уравнения Ньютона, так как улавливает и выделяет закономерности в хаосе случайных атомных событий. Подобно калейдоскопу, который в случайном сочетании стеклышек позволяет разглядеть фигуры, имеющие смысл и красоту.
Сочетания слов «статистическая причинность», «вероятностная закономерность» с непривычки режут слух своей несовместимостью. («Масляное масло» — плохо, но все же разумно, однако «немасленое масло» — это уж слишком.) Они и в самом деле несовместимы. Но в атомной физике мы вынуждены использовать их одновременно для того, чтобы во всей полноте объяснить особенности квантовых явлений. В действительности никакого логического парадокса здесь нет: понятия «случайность» и «закономерность» — дополнительные понятия. В согласии с принципом дополнительности Бора оба они одновременно и равно необходимы, чтобы определить новое понятие «квантовомеханическая причинность», которая есть нечто большее, чем простая сумма понятий «закономерность» и «случайность». Точно так же, как «атомный объект» всегда нечто более сложное, чем бесхитростная сумма свойств «волны» и «частицы».
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.