По ту сторону кванта - [69]
Однако если понимать приведенные рисунки атома буквально, то приходится представлять себе электрон как некое заряженное облако, форма которого зависит от степени возбуждения атома. По многим причинам такая картина неудовлетворительна.
Прежде всего электрон — все-таки частица, и убедиться в этом очень просто, наблюдая, например, его следы в камере Вильсона. Кроме того, мы теперь достаточно хорошо знаем, что никаких реальных колебаний и материальных волн в атоме нет. Реальны только волны вероятности. Как это новое знание изменит наши прежние представления об атоме?
Поставим мысленный опыт по определению формы атома водорода. Возьмем, как и прежде, «электронную пушку», но теперь будем обстреливать из нее не фольгу, а отдельно взятый атом водорода. Что мы при этом должны увидеть?
Большинство электронов «прошьет» атом водорода, как снаряд рыхлое облако, не свернув с пути. Но, наконец, один из них, столкнувшись с электроном атома, вырвет его оттуда и при этом сам изменит направление своего движения. Теперь позади атома мы увидим не один, а два электрона: один — из «пушки», другой — из атома. Допустим, что мы так точно измерили их пути, что можем восстановить точку их встречи в атоме. Можем ли мы на этом основании утверждать, что электрон в атоме водорода находился именно в этой точке?
Нет, не можем. Мы не в состоянии даже проверить свое допущение, поскольку атома водорода больше не существует — наше измерение его разрушило.
Этой беде, однако, легко помочь: все атомы водорода неразличимы, и, чтобы повторить опыт, можно взять любой из них. Повторный опыт нас разочарует: мы обнаружим электрон в атоме совсем не там, где ожидали найти его на основании первого измерения.
Третье, пятое, десятое измерения только укрепят нашу уверенность в том, что электрон в атоме не имеет определенного положения: каждый раз мы будем его находить в новом месте. Но если мы возьмем очень много атомов, проведем очень много измерений и при этом всякий раз будем отмечать точкой место электрона в атоме, найденное в каждом отдельном опыте, то в конце концов мы с удивлением обнаружим, что точки эти расположены не беспорядочно, а группируются в уже знакомые нам фигуры, которые мы раньше вычислили из уравнения Шредингера.
Из опытов по дифракции электронов мы уже знаем, как объяснить этот факт. В самом деле, тогда мы не знали, в какое место фотопластинки попадет электрон, теперь мы не знаем, в каком месте атома мы его найдем. Как и прежде, сейчас мы можем указать только вероятность обнаружения электрона в каком-то определенном месте атома.
В одной точке атома эта вероятность больше, в другой — меньше, но в целом распределение вероятностей образует закономерный силуэт, который мы и принимаем за форму атома.
Ничего другого нам не остается. Можно, конечно, возразить, что это не отдельный атом, а некий обобщенный образ многих атомов. Но это будет слабый аргумент: ведь все атомы в одном и том же квантовом состоянии неразличимы между собой. Поэтому точечные картинки, полученные в опыте по рассеянию электронов на многих, но одинаковых атомах, определяют одновременно форму и обобщенного атома, и одного отдельно взятого атома.
Здесь, как и всегда, где работают законы случая, необходимо учитывать их особенности. Для каждого отдельного атома функция ρ(x) указывает лишь распределение вероятностей найти электрон в точке х атома. Именно в этом смысле можно говорить о «вероятной форме отдельного атома». Но картина эта достоверна, поскольку она совершенно однозначна для любой совокупности одинаковых атомов.
Наша теперешняя картина атома бесконечно далека от представлений Демокрита. В сущности, от его представлений почти ничего не осталось.
Но плодотворные заблуждения всегда лучше, чем бесплодная непогрешимость. Не будь их, Колумб никогда бы не открыл Америку.
Сейчас мы достигли предела, который вообще доступен тем, кто пытается проникнуть в глубь атома без формул и уравнений. Тем не менее образ, который мы для себя сформировали, верен во всех деталях. Не пользуясь «математической кухней» квантовой механики, мы не сможем предсказать ни одного атомного явления, однако объяснить кое-что мы теперь в состоянии, если будем использовать новый образ атома грамотно и помнить о его происхождении.
ВЕРОЯТНОСТЬ И СПЕКТРЫ АТОМОВ
Не только форма атома, но и все процессы в нем подчиняются законам теории вероятностей. Имея дело с отдельным атомом, никогда нельзя сказать наверняка, где находится его электрон, куда он попадет в следующий момент и что произойдет при этом с самим атомом.
Однако уравнения квантовой механики всегда позволяют вычислить вероятности всех этих процессов. Вероятностные предсказания можно потом проверить и убедиться, что они достоверны, если провести достаточно много одинаковых испытаний. Даже такие люди, как Резерфорд, далеко не сразу поняли эту особенность атомных процессов.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.