По ту сторону кванта - [72]

Шрифт
Интервал

Волновая механика родилась год спустя, весной 1926 года. Ее встретили недоверчиво, поскольку в ней явно отсутствовали квантовые скачки — то, к чему лишь недавно и с большим трудом привыкли и что считалось главной особенностью атомных явлений.

В июне 1926 года Гейзенберг приехал в Мюнхен навестить родителей и «…пришел в совершенное отчаяние», услышав на одном из семинаров доклад Эрвина Шредингера и его интерпретацию квантовой механики.

Споры о волновой механике продолжались часами и днями и достигли предельной остроты в сентябре 1926 года, когда Шредингер приехал по приглашению Бора в Копенгаген.

Шредингер настолько устал от дискуссий, что даже заболел и несколько дней провел в доме Бора, который в течение всей болезни гостя почти не отходил от его постели.

Время от времени, характерным жестом подняв палец, Нильс Бор повторял:

— Но, Шредингер, вы все-таки должны согласиться… Однажды почти в отчаянии Шредингер воскликнул:

— Если мы собираемся сохранить эти проклятые квантовые скачки, то я вообще сожалею, что имел дело с атомной теорией!

— Зато остальные весьма признательны вам за это, — ответил ему Бор.

С течением времени точки зрения сторонников матричной и волновой механик сближались. Сам Шредингер доказал их математическую эквивалентность, а Макс Борн летом 1926 года догадался, какой физический смысл следует приписать ψ-функции Шредингера.

Опыты по дифракции электронов, ставшие известными осенью 1926 года, сильно укрепили веру в теории де Бройля и Шредингера. Постепенно физики поняли, что дуализм «волна-частица» — это экспериментальный факт, который следует принять без обсуждений и положить его в основу всех теоретических построений.

Теперь ученые старались понять, к каким следствиям приводит этот факт и какие ограничения он накладывает на представления об атомных процессах. При этом они сталкивались с десятками парадоксов, понять смысл которых зачастую не удавалось.

В ту осень 1926 года Гейзенберг жил в мансарде физического института в Копенгагене. По вечерам к нему наверх поднимался Бор, и начинались дискуссии, которые часто затягивались за полночь. «Иногда они заканчивались полным отчаянием из-за непонятности квантовой теории уже в квартире Бора за стаканом портвейна, — вспоминал Гейзенберг. — Однажды после одной такой дискуссии я, глубоко обеспокоенный, спустился в расположенный за институтом Фэллед-парк, чтобы прогуляться на свежем воздухе и немного успокоиться перед сном. Во время этой прогулки под усеянным звездами ночным небом у меня мелькнула мысль, не следует ли постулировать, что природа допускает существование только таких экспериментальных ситуаций, в которых… нельзя одновременно определить место и скорость частицы».

В этой мысли — зародыш будущего соотношения неопределенностей.

Быть может, чтобы снять напряжение этих дней, в конце февраля 1927 года Нильс Бор уехал в Норвегию отдохнуть и походить на лыжах. Оставшись один, Гейзенберг продолжал напряженно думать. В частности, его очень занимал давний вопрос товарища по учебе, сына известного физика Друде: «Почему нельзя наблюдать орбиту электрона в атоме при помощи лучей с очень короткой длиной волны, например гамма-лучей?»

Обсуждение этого эксперимента довольно быстро привело его к соотношению неопределенностей, и уже 23 февраля он написал об этом Паули письмо на 14 страницах.

Через несколько дней возвратился из отпуска Бор с готовой идеей дополнительности, которую он окончательно продумал в Норвегии.

Еще через несколько недель напряженных дискуссий с участием Оскара Клейна все пришли к выводу, что соотношение неопределенностей — это частный случай принципа дополнительности, для которого возможна количественная запись на языке формул.

В последующие месяцы интерпретация математического формализма квантовой механики дополнялась и уточнялась и окончательно утвердилась в Брюсселе на Сольвеевском конгрессе осенью 1927 года. На этот конгресс собрались Планк, Эйнштейн, Лоренц, Бор, де Бройль, Борн, Шредингер, а из молодых — Гейзенберг, Паули, Дирак, Крамерс. Это была самая суровая проверка всех положений квантовой механики. Она ее с честью выдержала и с тех пор почти не претерпела никаких изменений.

В те годы в Копенгагене, в институте Бора, была создана не только наука об атоме — там выросла интернациональная семья молодых физиков. Среди них были Гейзенберг, Паули, Крамерс, Гамов, Ландау, Гаудсмит и многие другие. Беспримерное в истории науки содружество ученых отличали бескомпромиссное стремление к истине, искреннее восхищение перед величием задач, которые им предстояло решить, и неистребимое чувство юмора, которое так гармонировало с общим духом интеллектуального благородства: «Есть вещи настолько серьезные, что о них можно говорить лишь шутя», — любил повторять Нильс Бор. который стал их учителем и духовным отцом.

Через много лет политические бури разбросают их по всему миру: Гейзенберг станет главой немецкого «уранового проекта»; Нильс Бор, спасаясь от нацистов, окажется в американском центре атомных исследований в Лос-Аламосе, а Гаудсмита назначат руководителем миссии «Алсос», которая будет призвана выяснить, что успел сделать Гейзенберг для постройки немецкой атомной бомбы.


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.