По ту сторону кванта - [7]
Теперь вспомните: энергия излучения растет с его частотой. Знал это, конечно, и Планк. Но как растет? Он предположил простейшее: энергия излучения Е>изл пропорциональна его частоте: Е>изл = h ν, где h — другой множитель пропорциональности. (Мысль эта настолько проста, что ее нельзя доказывать и объяснять через более простые понятия. Однако гениальные мысли отмечает именно такая классическая простота.) Предположив это, Макс Планк угадал формулу для спектральной функции U = U (ν, Т). Да, угадал. Но не надо думать, что все было так уж просто, над своей формулой Планк бился два года.
19 октября 1900 года происходило очередное заседание Немецкого физического общества, на котором экспериментаторы Рубенс и Курлбаум докладывали о новых, более точных измерениях спектра абсолютно черного тела. После доклада состоялась дискуссия, в ходе которой экспериментаторы сетовали, что ни одна из теорий не может объяснить их результаты. Планк предложил им воспользоваться своей формулой. В ту же ночь Рубенс сравнил свои измерения с формулой Планка и убедился, что она правильно, до мельчайших подробностей описывает спектр абсолютно черного тела. Наутро он сообщил об этом своему коллеге и близкому другу Планку и поздравил его с успехом.
Однако Планк был теоретик и потому ценил не только окончательные результаты теорий, но и внутреннее их совершенство. К тому же он не знал еще, что открыл новый закон природы, и считал, что его можно вывести из ранее известных. Поэтому он стремился теоретически обосновать закон излучения, исходя из простых посылок кинетической теории материи и термодинамики. Последовало два месяца непрерывной работы и предельного напряжения сил. Ему это удалось. Но какой ценой!
В процессе вычислений он вынужден был предположить, что излучение испускается порциями (или квантами), величина которых определяется как раз той же формулой Е = h ν, которую он незадолго перед этим угадал. В этом — и только в этом — случае удавалось получить правильную формулу для спектра излучения.
Соотношение Е = h ν нельзя доказать логически, как нельзя обосновать закон всемирного тяготения. Они есть — так устроен мир. Более того, только приняв их и с помощью их можно объяснить другие явления природы. И спектр абсолютно черного тела — тоже.
Формально предположение Планка было предельно ясным и простым но, по существу, противоречило всему прежнему опыту физики и годами воспитанной интуиции. Вспомните, мы много раз подчеркивали, что излучение — это волновой процесс. А если так, то энергия в этом процессе должна передаваться непрерывно, а не порциями — квантами. Это неустранимое противоречие Планк сознавал как никто другой. Когда он вывел свою знаменитую формулу, ему было 42 года, но почти всю остальную жизнь он страдал от логического несовершенства им же созданной теории. У последующих поколения физиков это чувство притупилось: они уже знали готовый результат и научились мыслить по-новому.
Но Планк был воспитан на традициях классической физики и целиком принадлежал ее строгому неторопливому миру. А вышло так: разрешив многолетнюю загадку в теории излучения, он тем самым нарушил логическую стройность всей классической физики. «Не слишком ли дорогой ценой достигнуто решение этой, в сущности, очень частной проблемы?» Для Макса Планка это было большим потрясением. Впоследствии, в докладе, который Планк произнес по случаю вручения ему Нобелевской премии, он вспоминал, что для него признание реальности квантов было равносильно «…нарушению непрерывности всех причинных связей».
Только значительно позже, в 1927 году, новая наука — квантовая механика — объяснила, что противоречия здесь нет. Но до этого времени еще далеко.
14 декабря 1900 года в зале заседаний Немецкого физического общества родилась новая наука — учение о квантах. Сухо и обстоятельно ординарный профессор физики Макс Карл Эрнст Людвиг Планк прочел перед небольшой аудиторией сугубо специальный доклад: «К теории закона распределения энергии в нормальном спектре».
В тот день мало было людей, которые поняли величие момента: плохая погода или логические противоречия теории, вероятно, занимали аудиторию больше. Признание пришло потом. И позже осмыслили значение постоянной Планка h для всего атомного мира. Она оказалась очень маленькой: h = 6,62 10>-27 эрг•сек, но она открыла дверь в мир атомных явлений. И всегда, когда мы из мира привычного и классического хотим перейти в мир необычный и квантовый, мы должны пройти через эту узкую дверь.
ВОКРУГ КВАНТА
ЯБЛОКО ДЕМОКРИТА
Мы пока очень мало знаем об атомах, но даже этих знаний достаточно, чтобы решить задачу Демокрита: как долго придется последовательно делить яблоко, чтобы добраться до его «атома»?
Предположим, что у Демокрита в руке было большое яблоко — сантиметров десять в диаметре. Тогда объем его равен примерно
V=10>3 см>3 и при каждом делении уменьшается вдвое, так что после n-го деленияя его объем V>n равен:
V>n = V/2>2 = 10>3/10>0,3n = 10>3–0,3•n.
Согласно оценке Лошмидта объем атома равен примерно (10
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.