Пилотирование вертолета - [6]

Шрифт
Интервал

Схемы сил, действующих на одну из лопастей несущего винта в вертикальной плоскости и плоскости вращении, приведены на рис. 32; на векторах сил указаны примерные их значения, так как изображение их в одном масштабе потребовало бы большого размера рисунка.



Рис. 32.Схема сил, действующих на лопасть несущего винта вертолета:

>1 — подъемная сила; 2 — сила веса лопасти; 3 — центробежная сила; 4 — кориолисовы силы


Угол β называется углом конусности и для каждого типа вертолета зависит в основном от оборотов несущего винта и полетного веса вертолета. Следует напомнить, что, как показали специальные летные исследования, более гибкая лопасть несущего винта и в то же время достаточно жесткая на кручение испытывает в полете меньшие напряжения, имея большее аэродинамическое качество, чем такая же, но более жесткая лопасть.

Кроме того, известно, что аэродинамическое качество лопасти в сильной степени зависит от состояния ее поверхности, формы в плане и геометрической закрутки. Чем глаже поверхность лопасти, тем выше ее качество. Трапециевидные в плане лопасти, так же как крылья самолета, с сужением 2–2,5 и с отрицательной на конце геометрической закруткой имеют качество на 10–12 % выше, чем прямоугольные в плане незакрученные лопасти (рис. 33).



Рис. 33. Зависимость относительного коэффициента полезного действия несущего винта от формы лопасти и качества ее поверхности


Ознакомимся подробнее с работой несущего винта.

Первые вертолеты, имевшие несущие винты с жестко закрепленными на втулке лопастями, могли неподвижно висеть у земли при безветрии. При первой же попытке начать поступательное движение вертолет начинал крениться; с увеличением скорости крен резко возрастал и вертолет либо прекращал движение, либо опрокидывался.

Происходило это вследствие разности подъемных сил на левой и правой половинах несущего винта с жестко закрепленными лопастями при наличии поступательной скорости.

На рис. 34 изображено поле скоростей несущего винта вертолета при полете с поступательной скоростью.



Рис. 34.Поле скоростей несущего винта при полете с поступательной скоростью (вид сверху)


Примем, что окружная скорость концов лопастей несущего винта равна 210 м/сек, а скорость полета вертолета — 40 м/сек, тогда в зависимости от азимутального положения лопасти скорость набегающего на лопасть потока будет Меняться от V>max = 250 м/сек до V>min = 170 м/сек. Как известно, подъемная сила элемента лопасти равна

Y>эл = сSρV>2/2

Нетрудно подсчитать, что подъемная сила левой половины несущего винта с жестко закрепленными во втулке лопастями в данном случае будет в 2,15 раза больше, чем подъемная сила правой половины, что неминуемо приведет к опрокидыванию вертолета.

Проследим, как работает в полете с поступательной скоростью одна из лопастей несущего винта вертолета на шарнирной подвеоке. Начнем с азимута 0°. В этой точке скорость конца лопасти относительно воздуха можно принять равной V>окр = ω∙R. в нашем случае 210 м/сек. Двигаясь дальше при вращении несущего винта, эта лопасть начинает обдуваться встречным потоком воздуха и в азимутальной точке 90° будет иметь скорость относительно воздуха 250 м/сек. Это максимальная скорость лопасти относительно воздуха. Условимся лопасть, идущую от азимутальной точки 0° к азимутальной точке 180°, называть наступающей лопастью, а идущую от азимутальной точки 180° к точке 0° через 270° — отступающей лопастью.

Подъемная сила у наступающей лопасти при отходе ее от точки 0° начинает увеличиваться вследствие роста скорости обтекания воздуха. Равновесие сил на лопасти нарушится, и увеличившаяся подъемная сила начнет поднимать лопасть вверх, поворачивая ее около оси горизонтального шарнира (рис. 35).



Рис. 35.Схема появления кориолисовой силы при взмахе лопасти несущего винта вверх


Одновременно вследствие возрастания лобового сопротивления наступающая лопасть начнет отставать от вращающейся втулки винта, поворачиваясь около вертикального шарнира в сторону заднего упора.

Однако подъем лопасти вверх и поворот ее назад будут очень небольшими вследствие мощного стабилизирующего влияния центробежной силы лопасти, устойчиво фиксирующей ее в пространстве.

Кроме того, при подъеме лопасти вверх из ее среднего положения вследствие уменьшения радиуса вращения центра тяжести лопасти на ней возникнет кориолисова сила К>1, направленная в сторону вращения (см. рис. 35).

Кориолисовы силы возникают в соответствии с законом сохранения энергии во всех тех случаях, когда у вращающегося тела изменяется разнос масс относительно оси вращения; при приближении вращающихся масс к оси вращения обороты тела возрастают, при удалении — уменьшаются.

Так, например, висящий под куполом цирка акробат, начав медленное вращение с разведенными в стороны руками и ногами, после их сведения так быстро начинает вращаться, что вызывает удивление и восхищение зрителей; парашютист, выполняя затяжной прыжок, в случае начавшегося вращения разбрасывает в стороны руки и ноги, прекращая этим опасное вращение (рис. 36). В обоих приведенных примерах показано умелое использование кориолисовых сил.


Рекомендуем почитать
Взлёт, 2011 № 08-09

Национальный аэрокосмический журнал. Новости военной и гражданской авиации, космонавтики и соответствующих отраслей промышленности.


История авиации 2002 05

Авиационно-исторический журнал, техническое обозрение.


Военно-транспортные самолеты, 1939-1945

Предлагаем вашему вниманию специальный выпуск журнала «Моделист-конструктор» — справочник «Военно-транспортные самолеты 1939–1945», продолжающий серию «Самолеты Второй мировой войны». Он рассказывает об основных типах военно-транспортных самолетов и содержит более 120 иллюстраций. Ранее вышли аналогичные издания, посвященные истребителям, бомбардировщикам, ближним разведчикам и штурмовикам, и самолетам морской авиации. В настоящее время готовится выпуск о дальних и высотных разведчиках. Он завершит серию «Самолеты Второй мировой войны».


Дирижабли и их военное применение

Книжка является одной из первых попыток восполнить пробел, существующий в литературе о дирижаблях в отношении их военного значения, и дать старшему и среднему начсоставу РККА представление о дирижабле как средстве ведения войны, имеющему за собой некоторый боевой опыт в прошлом и несомненные перспективы развития и боевого использования в будущем. Хотя работа не является исчерпывающей по ряду вопросов (так например о существующем вооружении дирижаблей — за недостатком материалов) и содержит ряд дискуссионных положений (тактическо-технические требования к дирижаблям), но представляет интерес, как одна из немногих работ по данному вопросу.(Отсутствуют страницы 115–118)


Авиация и космонавтика 2006 07

Авиационно-исторический журнал, техническое обозрение.


Авиация и космонавтика 2002 10

Авиационно-исторический журнал, техническое обозрение.