Пилотирование вертолета - [36]

Шрифт
Интервал



Рис. 82. Вихревое кольцо:

>1 — висение вертолета; 2 — малая скорость снижения; 3 — большая скорость снижения


При снижении вертолета в режиме вихревого кольца ухудшаются его устойчивость и управляемость и возникает интенсивная тряска всего вертолета.

Режим вихревого кольца до настоящего времени еще недостаточно исследован, однако для вывода вертолета из этого опасного режима достаточно перевести его на режим самовращения несущего винта. В этом случае вихревое кольцо «исчезает и вертолет начинает устойчиво снижаться на режиме самовращения. Вертикальное снижение на режиме самовращения не обеспечивает безопасного приземления из-за большой скорости снижения. Поэтому, переведя вертолет на режим самовращения опусканием рычага «шаг-газ» вниз до получения устойчивых оборотов несущего винта, равных номинальным, следует плавным отклонением ручки управления от себя перевести вертолет в поступательный полет.


САМОВРАЩЕНИЕ НЕСУЩЕГО ВИНТА. ОПАСНАЯ ЗОНА

Режим самовращения несущего винта (авторотация) — самый интересный режим его работы. На этом режиме несущий винт вертолета, не потребляя мощность двигателя, не только вращается, сохраняя необходимые обороты, но и создает тягу, обеспечивающую безопасное планирование и управляемость.

Необходимым условием самовращения несущего винта является прохождение воздушного потока снизу вверх через диск несущего винта, поэтому этот режим возможен только при снижении вертолета и напоминает режим планирования самолета с задросселированным двигателем.

Планировать на режиме самовращения несущего винта можно на всех скоростях — от максимальной до отвесного планирования.

Вертикальная скорость снижения вертолета зависит от скорости планирования. Кривая, показывающая зависимость вертикальной скорости снижения от поступательной скорости полета на режиме самовращения несущего винта, называется указательницей глиссад планирования (рис. 83).



Рис. 83.Указательница глиссад планирования вертолета


Поступательную скорость, соответствующую наименьшей скорости снижения, можно найти, проведя касательную к кривой, параллельную оси поступательной скорости. Скорость, соответствующую наибольшему качеству вертолета, т. е. скорость, при которой вертолет пролетит наибольшее расстояние, планируя с данной высоты, можно определить, проведя касательную из начала координат.

Режим самовращения несущего винта имеет огромное значение для вертолета, так как он обеспечивает выполнение посадки в случае отказа двигателя.

На этом режиме полета вертолет как бы превращается в автожир, и подъемная сила несущего винта при этом возникает за счет скоса потока, протекающего через диск несущего винта снизу вверх (рис. 84).



Рис. 84.Схема сил, действующих на вертолет при планировании на режиме самовращения несущего винта


Какая же причина заставляет вращаться несущий винт вертолета на этом режиме?

Многие считают, что несущий винт в этом случае должен вращаться в сторону, обратную первоначальному вращению, т. е. хвостиком вперед, так как его лопасти имеют положительный установочный угол. Однако, как увидим дальше, это мнение справедливо только при двух условиях: 1) если вертолет начнет снижение с остановленным винтом, что невозможно, и 2) если лопасти несущего винта вертолета будут иметь установочные углы, превышающие критические углы профиля лопастей.

Следует сказать, что для обеспечения устойчивого режима самовращения несущего винта необходимо уменьшить установочные углы его лопастей до некоторой малой величины путем опускания рычага «шаг-газ» вниз. Этот процесс очень похож на перевод самолета в режим планирования.

Рассмотрим схему сил, действующих на элемент лопасти несущего винта (рис. 85).



Рис. 85. Схема сил, действующих на элемент лопасти несущего винта при работе его на режиме самовращения:

>— установившийся режим; 2 — рост оборотов; 3 — падение оборотов


Как известно, подъемная сила профиля Y всегда перпендикулярна к потоку, а лобовое сопротивление профиля X направлено по потоку. Полная аэродинамическая сила элемента лопасти R>эл будет равна геометрической сумме сил Y и X. Когда полная аэродинамическая сила элемента лопасти R>эл перпендикулярна к плоскости вращения несущего винта, то этот случай соответствует установившемуся режиму самовращения несущего винта.

В случае уменьшения оборотов несущего винта по какой-либо причине окружная скорость R>эл элемента лопасти уменьшится, при этом увеличится угол атаки α, а следовательно, наклонится вперед. Появившаяся горизонтальная составляющая, направленная в сторону вращения несущего винта, начнет разгонять лопасть. Как только окружная скорость элемента лопасти достигнет исходной величины, полная аэродинамическая сила R>эл снова станет перпендикулярной к плоскости вращения несущего винта.

При случайном увеличении оборотов несущего винта угол атаки элемента лопасти уменьшится, R>эл наклонится назад, появится горизонтальная составляющая, тормозящая вращение лопасти, и обороти вновь упадут до равновесных.

Следовательно, необходимым условием установившихся оборотов режима самовращения для элемента лопасти является равенство 


Рекомендуем почитать
Взлёт, 2016 № 05 (137)

Национальный аэрокосмический журнал. Новости военной и гражданской авиации, космонавтики и соответствующих отраслей промышленности.


Рождение советской штурмовой авиации

Советская штурмовая авиация сыграла выдающуюся роль в Великой Отечественной войне, став незаменимым средством авиационной поддержки наземных войск в наступательных и оборонительных операциях. В данной работе показан процесс зарождения штурмовой авиации в 1920—1930-х гг., возникновение и первая реализация идеи штурмовых действий, трудный путь, пройденный к созданию и освоению в производстве «летающего танка» – самолета-штурмовика. В книге проанализированы особенности организационной структуры штурмовой авиации в составе ВВС в предвоенный период, показана эволюция теоретических взглядов на ее боевое применение.


Heinkel Не 100

Не-100 остался в истории авиации по двум основным причинам. Первым был факт установления на нем нового абсолютного мирового рекорда скорости. Самолет был действительно одним из самых скоростных в своем классе. Однако не прекрасные летные характеристики стали причиной того, что Не-100 стал так широко известен. Эта причина – прежде всего изощренная пропаганда III-го Рейха, которая представляла его в качестве нового совершенного истребителя Люфтваффе. Вся эта операция по дезинформации оказалась на столько удачной, что пилоты воюющих с Германией стран, периодически заявляли о фактах воздушных боев с этими самолетами («Не-113»), и это даже вне зависимости от того проходили ли они в Европе или на Тихом океане.


Асы люфтваффе. Пилоты Fw 190 на Западном фронте

Первую информацию о появлении в воздухе немецкого истребителя нового типа командование RAF почерпнуло из рапортов своих летчиков-истребителей. В сентябре 1941 г. многие пилоты стали докладывать о столкновениях с одномоторными самолетами, оснащенными двигателями воздушного охлаждения. Летчики ошибочно идентифицировали их как французские истребители Блок-151 или американские Кертисс «Хок-75». Привыкнув к преимуществу своих истребителей, англичане не могли поверить, что на вооружении люфтваффе может появится самолет лучший, чем истребители RAF.Сомнения окончательно рассеялись 13 октября 1941 г.


Несостоявшиеся «Авианосные» державы

Настоящая книга открывает серию изданий, объединенных в "Аналитическое приложение к справочнику "Боевые корабли мира . Сама структура справочного издания подразумевает краткое изложение материала, при этом большая часть интересной и зачастую уникальной информации остается за его рамками. Настоящее приложение призвано информационно дополнить и расширить данную тему. В "Портфеле заказов первой очереди редакции "Галея Принт" находятся подготовленные к изданию выпуски аналитического приложения, посвященные сверхмалым подводным лодкам, крейсерам ПВО, эволюции морского боя, созданию военных флотов основных морских держав в предверии Второй мировой войны и т.


История Авиации 2004 06

Авиационно-исторический журнал, техническое обозрение.