Первые три минуты - [44]

Шрифт
Интервал

Первоначальные вычисления Альфера, Хермана и Гамова не были правильны во всех деталях. Как мы видели в предыдущей главе, Вселенная, вероятно, стартовала с равным числом нейтронов и протонов, а не из нейтронного состояния. Кроме того, превращение нейтронов в протоны (и наоборот) имело место, главным образом, благодаря их столкновениям с электронами, позитронами, нейтрино и антинейтрино, а не путем радиоактивного распада нейтронов. Эти моменты были отмечены в 1950 году К. Хаяши, и к 1953 году Альфер и Херман (вместе с Дж. В. Фоллином-младшим) пересмотрели свою модель и сделали в основном правильное вычисление сдвига нейтрон-протонного баланса. Это был, на самом деле, первый подробный современный анализ ранней истории Вселенной.

Тем не менее ни в 1948, ни в 1953 году никто не собирался искать предсказанное микроволновое излучение. Более того, в течение многих лет до 1965 года астрофизикам вообще не было известно, что в моделях «большого взрыва» наблюдаемая распространенность водорода и гелия с неизбежностью приводит к существованию в нынешней Вселенной фона космического излучения, который может реально наблюдаться. Удивительно здесь не то, что астрофизики вообще не знали о предсказании Альфера и Хермана, — одна или две статьи всегда могут ускользнуть из поля зрения в огромном океане научной литературы, — значительно загадочнее, что более десяти лет никто больше не продолжал эту линию рассуждений. Лишь в 1964 году вновь начались вычисления процесса нуклеосинтеза в модели «большого взрыва» работавшими независимо Я.Б. Зельдовичем в СССР, Хойлом и Р.Дж. Тайлером в Великобритании и Пиблзом в США. Однако к этому времени Пензиас и Вилсон уже начали свои наблюдения в Холмделе, и открытие микроволнового фона произошло без всякого «подстрекательства» со стороны космологов-теоретиков.

Столь же загадочно, что те, кто знал о предсказании Альфера-Хермана, казалось, не придавали ему особого значения. Сами Альфер, Фоллин и Херман в работе 1953 года оставили проблему нуклеосинтеза для «будущих исследований», так что они не собирались вновь вычислять температуру фона микроволнового излучения на основе своей исправленной модели. (Они также не упомянули свое более раннее предсказание, что ожидается фон излучения, равный 5 К. Они сообщили о некоторых вычислениях нуклеосинтеза на собрании Американского Физического Общества в 1953 году, но затем все трое разъехались по разным лабораториям, и работа так никогда и не была написана в окончательном виде). Много лет спустя в письме к Пензиасу, написанному после открытия фона микроволнового излучения, Гамов отмечал, что в своей работе 1953 года в «Сообщениях Королевской Датской Академии» он предсказал фон излучения с примерно правильной температурой 7 К. Однако взгляд на эту работу 1953 года показывает, что предсказание Гамова основывалось на математически ошибочных аргументах, относящихся к возрасту Вселенной, а не на его собственной теории космического нуклеосинтеза.

Можно возразить, что космическая распространенность легких элементов не была достаточно хорошо известна в 50-х и в начале 60-х годов для того, чтобы вывести определенное заключение о температуре фона излучения. Даже сейчас мы не до конца уверены, что имеется универсальная распространенность гелия на уровне 20–30 процентов. Однако важно то, что задолго до 1960 года считалось признанным, что большая часть массы Вселенной находится в форме водорода. (Например, исследования Ганса Суесса и Гарольда Ури дали в 1956 году для распространенности водорода число 75 процентов по массе.) И при этом водород не образовался в звездах — это то первичное топливо, из которого звезды черпали свою энергию, образуя более тяжелые элементы. Это уже само по себе достаточно ясно говорит нам о том, что в ранней Вселенной должно было быть большое отношение фотонов к ядерным частицам, чтобы предотвратить превращение всего водорода в гелий и более тяжелые элементы.

Кто-то может спросить: а когда на самом деле стало технически возможным наблюдать трехградусный изотропный фон излучения? Трудно ответить точно, но мои коллеги-экспериментаторы говорят мне, что наблюдения могли быть проведены задолго до 1965 года, возможно, в середине 50-х, а может быть, даже и в середине 40-х годов. В 1946 году группа ученых из МТИ, возглавлявшаяся не кем иным, как Робертом Дикке, смогла установить верхний предел на любой изотропный внеземной фон излучения: эквивалентная температура была меньше 20 К на длинах волн 1,00; 1,25 и 1,50 см. Это измерение было побочным продуктом излучения атмосферного поглощения и, безусловно, не являлось частью программы наблюдательной космологии. (Дикке сообщил мне, что к тому времени, когда он начал интересоваться возможным фоном космического микроволнового излучения, он забыл о верхнем пределе 20 К на температуру фона, полученным им самим почти два десятилетия назад!)

Мне не кажется очень существенным с исторической точки зрения точно определить момент, когда стало возможным детектирование трехградусного изотропного микроволнового фона. Здесь важно то, что радиоастрономы не знали, что они должны пытаться его обнаружить! Рассмотрим для контраста историю нейтрино. Когда в 1930 году Паули впервые предположил существование нейтрино, было ясно, что нет ни малейшего шанса наблюдать эту частицу в любом из возможных тогда экспериментов. Однако детектирование нейтрино оставалось в умах физиков вызывающей задачей, и, когда в 50-е годы для этих целей стали доступны ядерные реакторы, нейтрино начали искать и нашли. Еще более яркий пример — открытие антипротона. После того как в 1932 году в космических лучах был открыт позитрон, большинство теоретиков ожидало, что протон, так же как и электрон, должен иметь свою античастицу. Не было никакой надежды образовать антипротоны на первых циклотронах, построенных в 30-х годах, но физики полностью сознавали значение этой проблемы, и в 50-е годы был построен ускоритель (беватрон в Беркли) специально так, чтобы иметь достаточно энергии для образования антипротонов. Ничего похожего не произошло в случае с фоном космического микроволнового излучения до тех пор, пока Дикке с сотрудниками не вознамерились обнаружить его в 1964 году. Но даже тогда Принстонская группа не была осведомлена о сделанной более десяти лет назад работе Гамова, Альфера и Хермана!


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.