Первые три минуты - [46]

Шрифт
Интервал

Конечно, кроме того, что информация плохо передавалась от экспериментаторов к теоретикам, она столь же плохо передавалась и от теоретиков к экспериментаторам. Пензиас и Вилсон никогда не слышали о предсказании Альфера-Хермана, намереваясь в 1964 году проверить свою антенну.

В-третьих, и мне думается, что самое главное, теория «большого взрыва» не привела к поиску трехградусного микроволнового фона потому, что физикам было чрезвычайно трудно серьезно воспринять любую теорию ранней Вселенной. (Я говорю так отчасти по воспоминаниям о моем собственном отношении к этому до 1965 года.) Каждая из упомянутых выше трудностей могла быть без особых усилий преодолена. Однако первые три минуты столь удалены от нас по времени, условия на температуру и плотность так незнакомы, что мы стесняемся применять наши обычные теории статистической механики и ядерной физики.

Такое часто случается в физике — наша ошибка не в том, что мы воспринимаем наши теории слишком серьезно, а в том, что мы не относимся к ним достаточно серьезно. Всегда очень трудно осознать, что те числа и уравнения, с которыми мы забавляемся за нашими столами, имеют какое-то отношение к реальному миру. Хуже того, часто кажется, что существует общее соглашение, будто некоторые явления еще не годятся для того, чтобы стать предметом солидных теоретических и экспериментальных исследований. Гамов, Альфер и Херман заслуживают колоссального уважения помимо всего прочего за то, что они серьезно захотели воспринять раннюю Вселенную и исследовали то, что должны сказать известные физические законы о первых трех минутах. Но даже они не сделали последнего шага, не убедили радиоастрономов, что те должны искать фон микроволнового излучения. Самое важное, что сопутствовало окончательному открытию в 1965 году трехградусного фона излучения, заключалось в том, что это открытие заставило всех нас всерьез отнестись к мысли, что ранняя Вселенная была.

Я подробно остановился на этой упущенной возможности потому, что эта история представляется мне одной из самых поучительных историй науки. Вполне понятно, что большая часть историографии науки посвящена ее успехам, ошеломляющим открытиям, блестящим выводам или великим волшебным скачкам, сделанным Ньютоном или Эйнштейном. Но я не думаю, что можно по-настоящему понять успехи науки, не понимая того, как тяжело они даются — как легко быть сбитым с пути, как трудно узнать в любой момент времени, что нужно делать дальше[47].

VII. ПЕРВАЯ СОТАЯ ДОЛЯ СЕКУНДЫ

Мы взялись за расчет первых трех минут в главе не с самого начала. Вместо этого мы начали с «первого кадра», когда космическая температура уже уменьшилась до 100 миллиардов градусов Кельвина и единственными частицами, имевшимися в большом количестве, были фотоны, электроны, нейтрино и соответствующие им античастицы. Если бы эти частицы были единственными типами частиц в природе, мы, вероятно, могли бы экстраполировать расширение Вселенной назад по времени и вычислить, что должно было существовать действительное начало, состояние бесконечных температуры и плотности, которое возникло на 0,0108 секунды раньше нашего первого кадра.

Однако современной физике известно много других типов частиц: мюоны, пи-мезоны, протоны, нейтроны и др. Когда мы смотрим назад на все более ранние моменты времени, мы сталкиваемся со столь высокими температурой и плотностью, что все эти частицы должны были присутствовать в большом количестве, находясь в состоянии теплового равновесия и непрерывного взаимодействия друг с другом. По причинам, которые я надеюсь разъяснить, мы до сих пор просто недостаточно знаем физику элементарных частиц, чтобы иметь возможность рассчитать с какой-то уверенностью свойства подобной смеси. Незнание микроскопической физики стоит как пелена, застилающая взор при взгляде на самое начало.

Конечно, заманчиво попытаться рассеять эту пелену. Искушение особенно велико для теоретиков вроде меня, чья работа значительно больше связана с физикой элементарных частиц, чем с астрофизикой. Множество интересных идей современной физики частиц имеют столь тонкие следствия, что их чрезвычайно трудно проверить сегодня в лабораториях, но эти следствия весьма драматичны, если подобные идеи применять к ранней Вселенной.

Первая проблема, с которой мы сталкиваемся, обращаясь к температурам выше 100 миллиардов градусов, связана с «сильными взаимодействиями» элементарных частиц. Сильные взаимодействия — это те силы, которые удерживают вместе нейтроны и протоны в атомном ядре. Эти силы не знакомы нам в повседневной жизни так, как знакомы электромагнитные или гравитационные силы, потому что радиус действия этих сил невероятно мал, около одной десятимиллионной от миллионной доли сантиметра (10>-13 см). Даже в молекулах, ядра которых обычно находятся на расстоянии нескольких сот миллионных долей сантиметра (10>-8 см) друг от друга, сильные взаимодействия между различными ядрами по существу не дают никакого эффекта. Однако, как указывает их название, эти взаимодействия очень сильны. Когда два протона прижимаются друг к другу достаточно близко, сильное взаимодействие между ними становится примерно в 100 раз больше, чем электрическое отталкивание; именно поэтому сильные взаимодействия способны удержать от развала атомные ядра, преодолевая электрическое отталкивание почти 100 протонов. Причиной взрыва водородной бомбы является перераспределение нейтронов и протонов, в результате которого они более тесно связываются друг с другом сильными взаимодействиями; энергия бомбы есть как раз та избыточная энергия, которая высвобождается при этом перераспределении.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.