Первые три минуты - [43]
Возможно, что Вселенная изначально была в высокой степени неоднородной и анизотропной, но постепенно сгладилась благодаря силам трения. Такая «перемешивающаяся» модель пропагандировалась, в частности, Чарльзом Мизнером из Мэрилендского университета. Возможно даже, что тепло, порожденное в процессе гомогенизации и изотропизации Вселенной силами трения, ответственно за теперешнее колоссальное (миллиард к одному) отношение фотонов к ядерным частицам. Однако, насколько мне известно, никто не может сказать, почему Вселенная должна иметь какую-то начальную степень неоднородности или анизотропии, и никто не знает, как рассчитать образованное при ее сглаживании тепло[46].
По моему мнению, правильное отношение к подобным неопределенностям не в том, чтобы (как, может быть, хотят некоторые космологи) отдать на слом стандартную модель, а скорее в том, чтобы воспринимать ее очень серьезно и тщательно разрабатывать ее следствия, даже лишь в надежде выявить противоречия с наблюдениями. Ведь неясно даже, могли ли большая начальная анизотропия и неоднородность сильно повлиять на рассказанную в этой главе историю. Могло быть так, что Вселенная сгладилась в первые несколько секунд; в этом случае космологическое образование гелия и дейтерия может быть рассчитано так, будто Космологический Принцип был всегда верен. Даже если анизотропия и неоднородность Вселенной продолжали сохраняться после эры синтеза гелия, образование гелия и дейтерия в любом однородно расширяющемся комке зависело бы только от скорости расширения внутри этого комка и не должно было слишком отличаться от рассчитанного по стандартной модели. Могло быть даже и так, что вся Вселенная, доступная нашему взору, обращенному к моменту нуклеосинтеза, была не что иное, как однородный и изотропный комок внутри неоднородной и анизотропной Вселенной.
Неопределенность, связанная с Космологическим Принципом, становится действительно существенной, когда мы обращаемся назад, к самому началу, или вперед, к концу Вселенной. Я буду полагаться на этот Принцип в большей части двух последних глав. Однако всегда следует допускать, что наши простые космологические модели могут описывать лишь малую часть Вселенной или ограниченный отрезок ее истории.
VI. ИСТОРИЧЕСКОЕ ОТСТУПЛЕНИЕ
Давайте оставим на время историю ранней Вселенной и рассмотрим историю последних трех десятилетий космологических исследований. В особенности я хочу попытаться разрешить здесь историческую проблему, которая представляется мне в равной степени загадочной и поразительной. Обнаружение в 1965 году фона космического микроволнового излучения было одним из самых важных научных открытий двадцатого века. Почему оно произошло случайно? Или, другими словами, почему не было систематических поисков этого излучения задолго до 1965 года?
Как мы видели в последней главе, измеренные современные значения температуры фона излучения и плотности массы Вселенной позволяют нам предсказать космическую распространенность легких элементов, находящуюся, как представляется, в хорошем согласии с наблюдениями. Задолго до 1965 года можно было привести обратное вычисление, предсказать фон космического излучения и начать его поиски. Из наблюдаемой в настоящее время космической распространенности гелия (около 20–30 процентов) и водорода (70–80 процентов), можно было вывести, что нуклеосинтез должен был начаться в то время, когда нейтронная фракция ядерных частиц упала до 10–15 процентов. (Напомним, что нынешняя распространенность гелия по массе есть в точности удвоенное значение нейтронной фракции в момент нуклеосинтеза.) Такое значение нейтронной фракции было достигнуто, когда Вселенная имела температуру около одного миллиарда градусов Кельвина (10>9 К). Условие, что нуклеосинтез начался в этот момент, позволяет сделать грубую оценку плотности ядерных частиц при температуре 10>9 К, в то время как плотность фотонов при такой температуре можно вычислить из известных свойств излучения черного тела. Следовательно, для этого момента было бы также известно отношение числа фотонов и ядерных частиц. Но это отношение не меняется, так что оно стало бы столь же хорошо известно и для настоящего времени. Из наблюдений теперешней плотности ядерных частиц можно было бы, следовательно, предсказать теперешнюю плотность фотонов и прийти к выводу о существовании фона космического микроволнового излучения с температурой где-то в интервале от 1 до 10 К. Если бы история науки была так же проста и прямолинейна, как история Вселенной, то кто-нибудь, рассуждая указанным способом, должен был бы сделать такое предсказание в 40-х или 50-х годах, и оно побудило бы радиоастрономов искать фон излучения. Но случилось не совсем так.
Действительно, предсказание, во многом соответствовавшее приведенной линии рассуждений, было сделано в 1948 году, но ни тогда, ни позже оно не привело к поискам излучения. В конце 40-х годов Георгий Гамов и его коллеги Ральф А. Альфер и Роберт Херман исследовали космологическую теорию «большого взрыва». Они предположили, что Вселенная стартовала из состояния с одними нейтронами и что затем нейтроны начали превращаться в протоны благодаря знакомому нам процессу радиоактивного распада, в котором нейтрон спонтанно превращается в протон, электрон и антинейтрино. В какой-то момент расширения стало достаточно прохладно для того, чтобы из нейтронов и протонов построились ядра тяжелых элементов путем быстрой последовательности нейтронных захватов. Альфер и Херман обнаружили, что, для того чтобы вычислить нынешнюю наблюдаемую распространенность легких элементов, необходимо предположить, что отношение числа фотонов к ядерным частицам составило бы порядка миллиарда. Используя оценки теперешней космической плотности ядерных частиц, они смогли предсказать существование фона излучения, оставшегося от ранней Вселенной, с температурой в настоящее время равной 5 К!
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.
Нину Михайловну Субботину (1877–1961) можно по праву назвать Стивеном Хокингом российской науки. Одна из первых российских женщин-астрономов, она получила профессиональное образование, но не могла работать в научном учреждении из-за тяжелой болезни, перенесенной в детстве. Создав собственную обсерваторию, Субботина успешно занималась наблюдательной астрономией и изучением солнечно-земных связей. Данные ее наблюдений регулярно публиковались в самых престижных международных астрономических журналах. Но круг ее интересов был значительно шире.
«Как попасть в отряд космонавтов?», «Что вы едите на борту космического корабля?», «Есть ли интернет на МКС?», «Плоская ли Земля?» – эти и другие вопросы постоянно задают космонавтам. Космонавт Сергей Рязанский в этой книге отвечает на вопросы, которые интересуют многочисленных любителей космонавтики.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге впервые (1992) в открытой отечественной литературе проводится систематический обзор советских космических систем военного назначения. Приводится классификация военных космических систем по выполняемым функциям, рассматривается организационная эволюция космической программы СССР и описываются советские космические системы военного и двойного назначения. Книга содержит большой справочный и статистический материал и предназначена для специалистов по космической технике, а также для лиц, интересующихся космонавтикой.Автор – выпускник факультета аэрофизики и космических исследований Московского физико-технического института, кандидат физико-математических наук.