Перелом. Часть 3 - [44]

Шрифт
Интервал

Впрочем, я подозревал, что эти микросхемы пойдут вовсе не на медленную периферию типа принтеров - те обойдутся и обычными, пусть и более медленными, схемами. А вот "быстрые" пойдут на сетевые карты - тут я рассчитывал, что дифференциальная передача сигналов и витая пара помогут решить проблему последней мили (да и не последней, если снизить скорость и ставить промежуточные усилители) - безо всяких там коаксиалов, модемов и прочей лабуды (эх, не видать мне ностальгии по свистящему модему). В общем, Наполеон "отдыхает".



ГЛАВА 11.

И вот, чтобы все это хоть когда-то заработало, мы и проводили сотни экспериментов. И строили графики, пытались вывести уравнения - работы лет на десяток ... да больше ! Гораздо. Но даже с эмпирическими методами все более-менее работало, разве что каналы были пошире минимально возможных - микрометров пятьдесят, сто - у нас уже получались кристаллы, в которых дефекты на таких размерностях не играли особой роли и выход схем был процентов пятьдесят.

Собственно, уже такие схемы обеспечивали рабочие частоты до мегагерца - а это снова семидесятые годы. Ну, если только нагрузка на выход конкретных схем была не многовата - иначе приходилось снижать рабочие частоты, чтобы все емкости успели зарядиться за такт, или ставить несколько двойных элементов НЕ, чтобы выход микросхемы работал на меньшее число входов, а уж эти вспомогательные элементы доносили бы сигнал на меньшее число своих входов - например, если какой-то выход идет на шестнадцать входов следующих каскадов, ставим, например, четыре пары НЕ - и вот этот прежде нагруженный выход начинает работать уже только на четыре входа - емкости существенно уменьшаются - четыре вместо шестнадцати. А уж каждые из этих четырех элементов работают на свои четыре входа. Но такое разнесение нагрузки вносит дополнительные задержки. И это мы еще пошли на микросхемотехническую хитрость - ввели в микросхемы выходные транзисторы с длинным каналом - при ширине 50-100 микрометров его длина достигала пяти миллиметров - чтобы он мог выдавать достаточно тока для зарядки емкостей, образованных выходными ножками самой микросхемы, проводниками к соседним микросхемам и входными ножками потребителей сигнала. Попытки устанавливать несколько кристаллов на одной подложке, чтобы уменьшить длину и емкость межсоединений, я пока пресек - мы только-только отладили автоматизированную пайку проволочных переходников между кристаллом и ножками микросхемы, и заново все это отлаживать не хотелось - ведь потребуется несколько типоразмеров таких составных микросхем, а была надежда, что кристалльщики смогут выдавать слитки со все меньшим количеством дефектов и те же схемы удастся уместить на одном кристалле. Овчинка выделки не стоила.

Но и с такими широкими каналами и подобранными опытным путем параметрами легирования схемы работали. Я так вообще видел в интернете ролики, где народ дома в подвале делал вполне рабочие транзисторы - отламывали кусок от кремниевой пластины (вот она была покупная), наклеивали поперек полоску скотча шириной примерно полсантиметра - делали "маску" для затвора, опускали в плавиковую кислоту, чтобы получить на открытых поверхностях фторид кремния, затем грели в печи - проводили диффузию фтора, то есть легировали кремний в глубину - и транзистор работал ! Собственно, почти так же - на коленке - появился в моей истории и первый биполярный транзистор в конце сороковых - там он вообще состоял из кристалла германия и двух металлических иголок - американцы ведь исследовали работу диода, пытаясь найти на поверхности кристалла наилучшие точки, где будет лучше всего идти полупроводниковый эффект, ну и естественным образом подумали, что два контакта могут быть лучше чем один - вот и додвигались до того, что контакты стали настолько близкими, что между ними потек ток.

Про то, что полевые транзисторы известны еще до войны, в двадцать шестом, а в тридцать пятом был запатентован транзистор с изолированным затвором - об этом я писал ранее. И, насколько я понимаю, они "не взлетели" лишь потому, что всем требовались усилительные элементы, а в качестве усилителей эти приборы работали плохо, гораздо хуже проверенных ламп - тут и малое усиление, и нестабильность параметров. А работа в режиме ключа никого пока не интересовала, тогда как для нас - и прежде всего для меня - именно этот режим был интересен - ведь мы делали вычислительную технику.

А по биполярным у нас работал сам Олег Лосев (в РИ умер в блокадном Ленинграде в начале 1942го), который еще в двадцатых исследовал полупроводники, а перед войной приступил и к трехэлектродным схемам - глядишь, если бы он не умер в моей истории, лавры открывателя транзистора стали бы его - а потом злые языки еще говорят, что Россия и СССР не могли придумывать разные вещи, все тянули с запада - так лезли всякие уроды - либо с войной, либо просто проходимцы на теплые места - поправить свои дела. Сейчас мы вытянули Лосева к себе, а уж он подсказал, кто бы еще мог помочь по этим работам - отдали нам далеко не всех, но полтора десятка опытных советских ученых у нас по полупроводникам работали. Заодно мы уже начали выпуск светодиодов - Лосев и их исследовал, получал свечение на контактах металла с полупроводниками, только не знал как эта штука называется. А я - знал - и как они называются, и для чего их можно применять - замена в электронной технике лампочек накаливания для индикации и подсветки экономила немало энергии и трудоемкости изготовления.


Еще от автора Сергей Владимирович Суханов
Начало

Большинство нормальных попаданцев, оказавшись в сорок первом, стараются попасть к Сталину и помочь переломить ход войны. Вот только как к нему попасть? И надо ли вообще это делать…?


Перелом. Часть 1

Русские долго запрягают, но быстро едут? Ну так "Поехали!".


Перелом. Часть 2

Русские долго запрягают, но быстро едут? Ну так "Поехали!".


Перелом. Часть 4

Большинство нормальных попаданцев, оказавшись в сорок первом, стараются попасть к Сталину и помочь переломить ход войны. Вот только как к нему попасть? И надо ли вообще это делать…?


Становление

После создания Западно-Русской ССР пути назад отрезаны, остается только держать удар.


Рекомендуем почитать
Восставшая природа

Природа всегда сильнее человека, потому что легко обойдется без него. Чего не скажешь о людях, которые не способны и дня прожить без того, что дает природа. Но что будет, когда силам планеты, настоящим силам, а не нашим придумкам вроде денег и славы, надоест человеческая цивилизация? Смогут ли выжить те, кто искренне считал себя венцом творения? Где пройдет грань между человеком — частью этого мира и человеком — разрушителем? Рассказ «Восставшая природа» дает ответы на эти вопросы. А еще дает надежду на то, что природа все же мудра и милосердна.


Владеющий

Влад раз за разом попадает в свои прошлые воплощения, и находит связи, тянущиеся из прошлого в настоящее; пронзительную историю любви к одной и той же душе, меняющей тела по пути в будущее; параллельно контактирует со своим Наставником, приобщаясь к сакральным знаниям.


Кейдж

…Европа, 1936 год. «Над всей Испанией безоблачное небо», иностранные войска вступают на испанскую землю, эхо близкой войны докатывается даже до маленького французского города Авалан. Вот-вот разверзнется небо… Американский журналист Крис Грант по прозвищу Кейдж ищет тему для репортажа на земле Грааля и, сам того не ожидая, переступает границу, за которой — нелегкий выбор. Гауптштурмфюрер СС Харальд Пейпер свой выбор давно уже сделал и теперь по заданию Гиммлера становится подпольщиком. Пылает Рейхсканцелярия, фиолетовым огнем горит планета Аргентина, негромко звучит прощальное танго…


Сад Дьявола

Они думали, что смогут противостоять американскому флоту хотя бы 1945 года… Хрена с два! Попытавшись изменить историю, соединение российского тихоокеанского флота, попавшее в 1945 год, огребло по полной программе, и даже ядерное оружие ему не помогло. Фрегат «Адмирал Головко» всемогущие американцы потопили, вообще стреляя наугад, а после применения ядерной боеголовки крейсер «Киров» куда-то оперативно пропал, бросив эсминец «Орлан» на съедение американской палубной авиации. У которой есть целая одна первая в мире управляемая бомба.


Республика - победительница

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Восьмой страж

Настал День Испытаний. День, который наступает без предупреждения. День, когда все младшие и старшие школьники Академии Пил подвергаются интенсивным физическим и психологическим испытаниям, чтобы выявить, готовы ли они выпуститься и стать тайными агентами правительства. Аманда и ее бойфренд Эйб — лучшие ученики, и только что они выдержали тридцать шесть часов испытаний. Но они младшие школьники и не ждут выпуска. Это должно произойти в следующем году — они планируют вместе присоединиться к ЦРУ.Но когда объявляют выпускников, результаты шокируют.