Отличная квантовая механика - [31]

Шрифт
Интервал

Боба после измерения Алисы зависит от условий измерения. Но квантовое состояние — это чисто теоретический конструкт, его невозможно непосредственно наблюдать в эксперименте. Мы можем получить информацию о состоянии только косвенным путем, из статистики, полученной в многочисленных измерениях.

Так, может быть, от всех этих парадоксов получится уйти, вообще отказавшись от концепции квантового состояния и придумав другую теорию, которая столь же хорошо объясняла бы экспериментальные результаты, но не содержала бы теоретических концепций, противоречащих здравому смыслу? Ответ на этот вопрос мы найдем в разд. 2.3. А пока давайте обсудим еще один парадокс, который позволяет взглянуть на проблему под еще более острым углом. Рассмотрим следующий сценарий:

1. Алиса и Боб имеют множество общих копий состояния |Ψ>—⟩.

2. Над каждой копией сначала Боб производит измерение в каноническом, диагональном или круговом базисе (он выбирает случайным образом). Затем Алиса измеряет свой фотон в базисе {|θ⟩, |π/2 + θ⟩} и сообщает результат Бобу.

3. После того как все измерения завершены, Боб восстанавливает квантовое состояние своего фотона по данным, которые он записал с использованием метода квантовой томографии (упр. 1.15), принимая «задним числом» во внимание (постселектируя) только те события, в которых Алиса измерила |θ⟩.

Если бы измерения Боба происходили после измерений Алисы, то он благодаря явлению удаленного приготовления состояния восстановил бы состояние как |π/2 + θ⟩. Но мы уже знаем из упр. 2.41, что коррелирующие вероятности результатов Алисы и Боба не зависят от порядка измерений. То есть Боб получит в точности ту же статистику результатов своих измерений — те же pr>H, pr>V, pr>+, pr >—, pr>R, pr>L — вне зависимости от того, делаются его измерения до или после измерений Алисы, и восстановит, следовательно, то же состояние |π/2 + θ⟩. Получается, что эффект удаленного приготовления состояния наблюдается даже после того, как Боб измерил и тем самым разрушил свой фотон.


Упражнение 2.44*. Покажите, что, если бы квантовое клонирование было возможно, возможна была бы и сверхсветовая связь.

Подсказка: используйте удаленное приготовление и квантовую томографию.

2.2.4. Смешанные состояния

Теперь рассмотрим ситуацию, в которой Алиса теряет свою долю запутанного состояния или просто отказывается сообщить нам о результатах своих измерений. Фотон поглощается на пути к детектору Алисы, или детектор отказывает, или фотон попросту улетает от Алисы в окно лаборатории и дальше в небо, где его, возможно, измерят какие-нибудь инопланетяне. Что мы можем сказать в этом случае о квантовом состоянии фотона[43] Боба?

Мы знаем одно (упр. 2.41): что бы ни происходило с фотоном Алисы, экспериментально измеряемые свойства фотона Боба не меняются. Поэтому если нас интересует описание фотона Боба, то мы можем сделать любое удобное нам предположение о судьбе фотона Алисы. Будем считать, что Алиса измерила свой фотон в каноническом базисе и не сообщила нам результат.

Предполагая еще раз, что начальным состоянием является |Ψ>—⟩, мы знаем, что Алиса может обнаружить при этом либо |H⟩ (в таком случае фотон Боба проецируется на |V⟩), либо |V⟩ (а в этом случае фотон Боба проецируется на |H⟩). Но, поскольку результат Алисы нам неизвестен, мы можем описать состояние фотона Боба только словесно как ансамбль «либо |H⟩ с вероятностью 1/2, либо |V⟩ с вероятностью 1/2».

Это самое большее из того, что возможно. Предполагая, что Алиса могла проводить измерения в других базисах, мы можем описать фотон Боба как «либо |+45º⟩ с вероятностью 1/2, либо |–45º⟩ с вероятностью 1/2» (упр. 2.9) или «либо |R⟩ с вероятностью 1/2, либо |L⟩ с вероятностью 1/2» (упр. 2.38) и т. д. Все эти описания эквивалентны (упр. 1.12). Поляризация фотона Боба полностью смешанная — аналогично поляризации естественного света. Его состояние не представлено в гильбертовом пространстве никаким определенным вектором.

В главе 5 мы будем изучать свойства смешанных состояний и способы их математического описания. Пока же важно понять, что если мы теряем часть запутанного состояния, то оставшаяся часть теряет когерентность: она уже не находится в состоянии суперпозиции, а представляет собой просто статистическую смесь. В этом случае она описывается на языке классической теории вероятностей, а не квантовой механики.

Замечу, что мы уже говорили о потере квантовой когерентности в контексте измерений Welcher Weg в эксперименте с квантовой интерференцией (разд. 1.5). Более того, это явление той же природы, что и те, которые мы изучаем сейчас, как мы увидим в разд. 2.4.


Упражнение 2.45. Алиса и Боб имеют общее запутанное двухфотонное состояние:

Опишите в виде ансамбля состояние фотона Боба, считая, что Алиса измеряет поляризацию своего фотона (1) в каноническом и (2) в диагональном базисе, но не сообщает Бобу результат измерения.

В каждой части этого упражнения ансамбль, описывающий смешанное состояние Боба, зависит от базиса, в котором Алиса проводит свое измерение. Но подчеркну еще раз: эти разные ансамбли соответствуют одному и тому же набору вероятностей в случае, если Боб будет проводить измерение на своей части состояния. Если бы дело обстояло не так, Боб мог бы строить выводы о действиях Алисы — а это, как мы выяснили в подразд. 2.2.3, невозможно


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.