От водорода до …? - [4]

Шрифт
Интервал

В поисках способов получения золота или «философского камня» алхимики проделывали неисчислимое количество опытов. Эти опыты позволили установить ряд фактов, послуживших основанием для создания новых алхимических «элементов» мира. Так, наблюдая способность ртути растворять (а тогда считалось — поглощать) в себе некоторые металлы и выделять их при нагревании, алхимики ввели в обиход отвлеченное представление о «философской ртути» как носителе металлических свойств. Способность серы соединяться со многими металлами, с образованием землистых масс, из которых при известных условиях (обжиг и т. д.) вновь выделялся металл, послужила поводом для появления в обиходе алхимиков нового «элемента» мира — «философской серы». Она являлась носителем изменяемости металлов от действия огня. Позднее в число алхимических «элементов» мира была включена «философская соль» — носитель вкуса, твердости, растворимости и вообще изменяемости от действия воды.

Но алхимические «элементы» мира, конечно, не могли способствовать развитию науки. Прогресс химических знаний был незначителен и определялся открытием отдельных химических соединений, случайно получавшихся в неисчислимом количестве опытов, связанных с поисками «философского камня». Схоластическая направленность знаний, слепой догматизм, метафизика, вера в колдовство, лженаучные теории астрологии, на которые опиралась алхимия, — все это было зданием на песке, и оно должно было неизбежно рухнуть.

Экономическая жизнь и дальнейшее развитие в городах таких отраслей промышленности, как металлургия, стеклоделие, красильное производство и др., становились невозможными без соответствующих практических данных химии. Алхимия же, запутавшись в поисках «философского камня» среди отвлеченных «элементов» мира — «ртути», «серы» и «соли» — не могла, конечно, удовлетворить практических запросов жизни. И все же «без алхимии не было бы и химии» (Ф. Энгельс).

В результате многовековых бесплодных поисков стало понятно, что для познания законов природы и сущности ее вещей недостаточно слепого преклонения перед авторитетом Аристотеля, а необходимо опытное изучение природных явлений и их закономерностей. Опыт показывал, что число основных веществ, из которых построена Вселенная, значительно больше четырех «элементов» Аристотеля и трех алхимических и что сами неблагородные металлы являются простыми, далее неразложимыми и не превращающимися в другие вещества природы.

В 1668 г. четырнадцатый сын Ричарда, графа Йоркского, Роберт Бойль, выдающийся ученый XVII столетия, опубликовал книгу под заглавием «Скептик-химик или сомнения и парадоксы относительно элементов алхимиков». В этой книге Бойль отрицал элементы-качества Аристотеля и «элементы» алхимиков и впервые в истории науки о веществе дал понятие об элементе, вытекавшее из экспериментальных наблюдений. Изучая природу металлов, Бойль заявлял: «Я очень хотел бы знать, каким образом можно разложить металлы на ртуть, серу и соль; я обязуюсь покрыть все издержки, необходимые для этого. Заверяю, что я никогда не мог этого достичь».

На основании многочисленных опытных данных Бойль называет «…элементами … некоторые первоначальные и простые, вполне несмешанные тела; эти тела не состоят из других тел или друг из друга и являются составными частями, из которых сложены все вполне смешанные тела и на которые последние в конце концов распадаются».

Таких неразложимых химическими средствами простых веществ, или элементов Бойля, к концу XVII в. насчитывали 15. Но сколько их есть в природе? Этого никто не знал. И на этот вопрос, казалось, нельзя было дать ответа даже с помощью опыта, который мог только указать: простое или сложное то или иное вещество. А так как средства химического анализа были весьма ограничены, то и этот вопрос не всегда разрешал опыт.

Если к сказанному добавить, что груз алхимического прошлого еще тяготел над мышлением ученых, и сам Бойль явился основоположником учения о «сверхтонкой материи огня» (флогистоне), то становится ясным, как далеко было до ответа на поставленный вопрос>[3]. Потребовалось еще много времени, потребовался гений М. В. Ломоносова, сумевшего в опытах по прокаливанию металлов в запаянных сосудах (без доступа воздуха) доказать отсутствие «сверхтонких материй» — тепла, холода, огня и других, которыми так плодовит был XVIII в., прежде чем вопрос об элементах стал на научную основу.

Спустя столетие после работ Р. Бойля французский ученый Антуан Лоран Лавуазье составил первый список химических элементов. Из тридцати пяти названий в нем только 23 действительно являлись элементами. К первой трети XIX в. число химических элементов достигло трех десятков, а к середине XIX в. их количество перевалило за пятьдесят. И по-прежнему никто из ученых не знал, сколько же элементов находится в природе, хотя в химических методах определения элементов теперь уже никто не сомневался. Никто не знал и того, конечно или бесконечно число элементов. А так как начиная с пятидесятых годов XIX в. почти не проходило года, чтобы кто-нибудь из химиков не открывал новый элемент, то некоторые ученые стали думать, что число различных элементов может быть столь же велико, как и число тел природы.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.