От водорода до …? - [107]
Открытие радия и явление радиоактивности знаменовали в истории развития науки новый этап в изучении вещества и начало новой эры в развитии техники. На грани двадцатого века человеческий гений совершил скачок к вершинам знания и власти над силами природы.
Как памятник великому подвигу Марии Кюри на Брюссельской выставке в павильоне «Атом» демонстрировалась ее записная книжка. Через много лет страницы сохранили значительную радиоактивность. Может быть это так рано и прервало жизнь великого ученого?
Бесперспективный элемент
Есть элементы, которым, по-видимому, не суждено, по крайней мере в ближайшем будущем, получить широкое применение хотя бы потому, что в земной коре они находятся в ничтожных количествах. К числу таких элементов можно отнести актиний, процентное содержание которого в земной коре выражается дробью, в которой значащая цифра стоит на пятнадцатом месте после запятой (5 · 10>–15%).
Несколько убедительнее и, пожалуй, нагляднее будет другая цифра. Актиний встречается как примесь к урану. В тонне содержится всего лишь шесть стотысячных долей грамма актиния. Это наиболее богатый источник актиния. Таким образом, чтобы добыть 1 г актиния, необходимо переработать 16 000 т урана, т. е. 1000 вагонов. Неудивительно, что в самых современных справочниках отмечают: «Соединения актиния почти не изучены». Только о соединении актиния с серой пишут, что оно черного цвета и что у актиния, по-видимому, должны быть сильно выражены основные свойства. Однако последнее заключение сделано не на основе экспериментального факта, а исходя из положения актиния в периодической системе элементов Д. И. Менделеева.
Актиний обладает радиоактивностью и является «родоначальником» семейства актинидов.
Получать металлический радий из его солей Марии Кюри-Склодовской помогал французский ученый А. Дебьерн. Руководствуясь методами Склодовской, он выделил из урановой руды новый элемент — актиний. Это было в 1899 г.
Современная ядерная физика позволяет «восполнить» недостаток отдельных элементов в природе. Актиний получают в небольших количествах в атомных реакторах при облучении радия нейтронами. Это позволяет изучить некоторые химические свойства актиния.
Актиний — серебристо-белый металл, напоминающий лантан. При обычных условиях он испускает слабое голубоватое свечение, заметное в темноте. Во влажном воздухе актиний легко окисляется с образованием белой окисной пленки, предотвращающей дальнейшее окисление. Температура плавления актиния 1050 ± 50 °C, температура кипения — около 3300 °C. В настоящее время известно 10 изотопов актиния, наиболее изученными являются изотопы актиний-227 (период полураспада 21,6 года) и актиний-228 (период полураспада 6,13 часа).
Элемент, переживающий вторую молодость
Академик А. Е. Ферсман в книге «Занимательная геохимия» приводит шуточный рассказ о том, как старые железнодорожники, придумывая названия станций построенной железной дороги, назвали одну из них Африкандой только потому, что в день их приезда на этой станции стояла невыносимая, «как в Африке», жара.
Нечто подобное произошло и с элементом торием. Элемент «окрестил» Берцелиус по названию минерала торита, из которого была выделена «ториевая земля». Минерал торит, в свою очередь, получил название от имени древнегерманского бога грома и войны Тора. Конечно, Берцелиус не предполагал каких-то таинственных свойств у этого элемента, не связывал его особенностей с громом и военными событиями. Название дано было гораздо произвольнее, чем случай с Африкандой, и, очевидно, приближалось к поступку тех родителей, которые, обрадовавшись появлению на свет дочери, называют ее Артиллерией.
Совершенно очевидно, что разработка терминологии для вновь открываемых минералов играет не последнюю роль. Об этом убедительно писал академик А. Е. Ферсман, но, к сожалению, вопрос с наименованиями новых минералов и элементов пока остается не разрешенным, и по-прежнему автор-открыватель дает названия по своему желанию.
Открытый в 1828 г. в «ториевой земле», торий через несколько лет был выделен в свободном виде. Однако этот элемент добывался столь сложными путями, что еще в конце XIX в. килограмм соли этого элемента стоил более тысячи рублей.
Проходило одно десятилетие за другим, но торий продолжал оставаться известным только химикам, да и то не всем. Поворот в истории элемента тория связан с открытием ценного свойства двуокиси тория. При нагревании это вещество испускает яркий и приятный для глаз белый свет. Во второй половине прошлого века получили распространение так называемые газокалильные лампы — источники освещения для помещений и улиц. Важнейшей частью этих ламп являлись газокалильные сетки — сетчатые колпачки из 99 % двуокиси церия. Эти лампы на несколько десятилетий отсрочили начавшее уже гибнуть из-за непосильной конкуренции с электрическим освещением производство светильного газа. В пламени светильного газа колпак из смеси двуокисей тория и церия испускает яркий свет, так как теплота сгорания газа превращается большей частью в световую энергию. Это было очень выгодно. Изобретатель газокалильных сеток нажил изрядное состояние. Однако, как ни ярко светились ториевые колпачки, на смену им пришел «русский свет» — электрические лампочки русского изобретателя Лодыгина, и ториевые колпачки газокалильных фонарей потеряли свое значение. Вместе с этим резко сократилось применение и производство ториевых соединений. История элемента, казалось, уже заканчивалась. И не более как двадцать лет назад в справочниках о тории писали кратко: «Почти никакого технического применения не имеет». Это соответствовало действительности — торий почти не применяли. Он использовался главным образом как добавка в сердечники углей для дуговых ламп прожекторов.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.