Онтология математического дискурса - [25]
Последнее утверждение представляется, по-видимому, слишком категоричным. Прямую или окружность можно провести и в воображении. Заметим однако, что несмотря на такую возможность почти всегда, даже при рассмотрении элементарных понятий предпочитают пользоваться чертежами. Это обстоятельство представляется нам важным, вытекающим из сути математического дискурса, а отнюдь не из слабости нашей памяти. Мы вернемся к этой проблеме позже, а сейчас заметим лишь, что синтетическое суждение, высказываемое в постулате, подразумевает не только возможность, но и действительность обсуждаемого объекта. Нам предстает не только понятие и образ, но также и чувственно воспринимаемый единичный предмет, который согласуется не только с формальными, но и с материальными условиями опыта.
Мы будем придерживаться той интерпретации "Начал" Евклида, о которой упоминает, например, Фридман ([72], c. 88-89). Согласно этой интерпретации постулаты вводят ряд элементарных операций (построений), которые рассматриваются как заведомо выполнимые. Любое другое построение будет выполнимым, если оно представляет собой последовательность этих элементарных операций. (Естественно, что при дальнейшем изложении геометрии вместо элементарных операций могут фигурировать и более сложные построения, выполнимость которых показана ранее.) К развертыванию такой последовательность выполнимых операций сводится не только решение задач на построение, но и доказательство теорем. Всякое геометрическое предложение формулируется как некоторое общее утверждение. Это значит, что в нем предполагается возможность какого-либо понятия. Важно увидеть, что в любом предложении (т.е. в синтетическом суждении) речь идет именно об одном понятии. Добавляя к субъекту новый предикат, мы не устанавливаем отношение двух понятий, а создаем одно новое. Например, когда мы утверждаем, что сумма внутренних углов треугольника равна двум прямым, то предполагаем реальную возможность треугольника, обладающего названным признаком, т.е. мы говорим, что понятие "треугольник, сумма внутренних углов которого равна двум прямым" возможно. Выражение в кавычках неудачно в том смысле, что создает впечатление будто равенство суммы углов указанной величине есть некий различительный признак, выделяющий определенный вид в роде треугольников. Последнее, конечно же, неверно. Синтетическое суждение, являющееся содержанием приведенной теоремы, создает новое понятие, которое мы попытались назвать с помощью приведенного здесь несколько неуклюжего выражения. Это понятие нетождественно понятию треугольника, т.к. предикат не выводится из понятия субъекта. Он присоединяется к нему в процессе синтеза.
Проводимое далее доказательство, призванное показать реальность возможности обсуждаемого понятия, как раз и заключается в развертывании синтеза. Нам необходимо предъявить какую-либо построенную по правилам конструкцию, соответствующую понятию, реальная возможность которого доказывается. Конструкция должна быть сооружена в результате ряда действий, предписанных постулатами. Последовательность применения постулатов составляет схему рассматриваемого понятия, а возможность понятия будет установлена, когда будет завершено построение конструкции. Иными словами, возможность понятия будет установлена, когда мы предъявим соответствующий этому понятию единичный предмет, воспринимаемый чувствами. Чтобы более точно рассмотреть взаимодействие возможного и действительного при доказательстве, нам представляется уместным развернуть процедуру доказательства подробнее, описав ее в тех терминах, которые использовались еще в античности.
2 Структура доказательства у Евклида в связи с категориями модальности
Сейчас при изложении требующих доказательства предложений в математической литературе явно выделяются две части: формулировка предложения и его доказательство. Для античных авторов дело обстояло иначе. В изложении теоремы выделялось пять или шесть частей.(См. примечание 3)Этот способ структурирования процедуры доказательства оказывается очень уместным для правильного понимания соотношения возможного и действительного, а также общего и единичного в математическом рассуждении. Хинтикка [74] утверждает, что структура доказательства у Евклида явилась парадигмой для Канта.
Охарактеризуем кратко эти шесть частей изложения теоремы, используя в качестве примера упомянутую выше теорему о внутренних углах треугольника.
1. Утверждение (protasis) дает общую формулировку теоремы. В нашем случае эта первая часть теоремы выглядит так: сумма внутренних углов треугольника равна двум прямым.
2. Экспозиция (ekqesis) указывает на единичный предмет, общее понятие которого дано в утверждении. Для геометрии естественно в этой части теоремы дать чертеж.
Пусть ABC - произвольный треугольник.
3. Ограничение или детерминация (diorismos) состоит в переформулировании общего утверждения для представленного в экспозиции единичного предмета: сумма углов 1, 2 и 3 равняется двум прямым.
4. Построение (kataskeuh) - это то, что сейчас обычно называют дополнительным построением. В нашем случае оно выглядит так:
Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.
Монография посвящена одной из ключевых проблем глобализации – нарастающей этнокультурной фрагментации общества, идущей на фоне системного кризиса современных наций. Для объяснения этого явления предложена концепция этно– и нациогенеза, обосновывающая исторически длительное сосуществование этноса и нации, понимаемых как онтологически различные общности, в которых индивид участвует одновременно. Нация и этнос сосуществуют с момента возникновения ранних государств, отличаются механизмами социогенеза, динамикой развития и связаны с различными для нации и этноса сферами бытия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Впервые в науке об искусстве предпринимается попытка систематического анализа проблем интерпретации сакрального зодчества. В рамках общей герменевтики архитектуры выделяется иконографический подход и выявляются его основные варианты, представленные именами Й. Зауэра (символика Дома Божия), Э. Маля (архитектура как иероглиф священного), Р. Краутхаймера (собственно – иконография архитектурных архетипов), А. Грабара (архитектура как система семантических полей), Ф.-В. Дайхманна (символизм архитектуры как археологической предметности) и Ст.
Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.