Охотники за частицами - [6]

Шрифт
Интервал

Этот заряд он смело приравнивает заряду электрона. Через несколько лет опыт Томсона повторяет и Вильсон, но с важным усовершенствованием: он заставляет ионное облако оседать в конденсаторе. Меняя напряженность электрического поля, Вильсон может уже регулировать скорость падения заряженного облачка. И это сразу резко повышает точность измерения заряда электрона.

Дорожка проторена. По ней уже движется целый отряд ученых, которым предстоит отшлифовать до филигранного блеска метод Вильсона — Томсона. С 1909 года их возглавляет американец Роберт Милликен. Измерение заряда электрона он первым начинает производить не на ионном облаке — метод, увы, нелегкий, таящий в себе множество подводных камней, — а на масляной капле.

Только вдумайтесь: определять ничтожнейший заряд ничтожнейшей из частиц — и на чем? — на крупной, видимой запросто в микроскоп обыкновенной кухонной масляной капле. Что ни говори, а мысль очень дерзкая!

Правда, сама идея опыта принадлежит не Милликену, а австрийскому физику Францу Эренгафту. Но Милликен может по праву считаться вторым ее отцом: до такого совершенства он довел ее воплощение в опыте.

Эта «кухонная» капля не соскальзывала по стенке кастрюли, а медленно и величественно опускалась в воздухе между пластинами конденсатора. Ей не давали осесть на дно, уйти из поля зрения микроскопа.

Включалось электрическое поле в конденсаторе, и капля столь же величественно начинала подниматься вверх. Ничтожное передвижение регулятора — и капля надолго застывала в неподвижности. Силу притяжения капли к земле уравновешивала электрическая сила притяжения к верхней пластине конденсатора.

А дальше шел точнейший промер и расчет: диаметр капли, сила трения ее о воздух, точная сила земного притяжения, плотность масла и плотность воздуха, напряженность поля в конденсаторе, учет неизбежных ошибок опыта из-за мелких движений воздуха, небольших колебаний поля — все эти «плюсы-минусы». И, наконец, появлялся результат — три или четыре цифры, за правильность каждой из которых можно ручаться каждым днем долгого сидения над микроскопом, каждой неделей новой настройки капризного прибора, каждым десятком листов кропотливых расчетов.

И когда уже совсем недавно обнаружилось, что цифру, полученную Милликеном, подпортило неверное значение вязкости воздуха, взятое им в расчет в 1913 году (и известное тогда), он, уже будучи стариком, не поленился и двадцать семь лет спустя улучшил свой собственный метод и провел новые точнейшие измерения заряда электрона. Методом Милликена еще в десятые годы нашего века удалось выяснить, что электрических зарядов, меньших заряда электрона, не существует.

А с развитием метода скрещенных полей Томсона удалось более точно определить отношение заряда к массе электрона и отсюда уже вычислить массу электрона. Она оказалась равной приблизительно 0,000 000 000 000 000 000 000 000 000 9 грамма (что сокращенно записывают 9 · 10>–28 г). И она оказалась самой маленькой массой из всех существующих в природе.

Метод Томсона в свою очередь зажил самостоятельной жизнью и спустя двадцать лет привел к еще одному важнейшему открытию в атомной физике — открытию изотопов. Но об этом — в свое время и на своем месте…


Шквал открытий

Конец девятнадцатого века ничуть не схож с концом восемнадцатого. Тогда говорили наполеоновские пушки — они играли марш молодому капитализму, вступающему в безраздельное владение Европой. В конце девятнадцатого века в Европе стоит настороженная тишина. В этой тишине только очень тонкий слух может уловить громы будущих войн. Явственнее всего громы доносятся из дипломатических кабинетов европейских столиц. В тихие университетские городки они не долетают совершенно.

Да и, пожалуй, там они не были бы услышаны за безмолвным звоном великой битвы идей. Давно наука не помнит такого шквала первостепенных, ярчайших открытий, как этот — в последние годы девятнадцатого и первые годы двадцатого века. Словно все тропы, которыми до сих пор шла физика, свились в тугой узел, а из него вышла новая дорога, прорубленная в неведомый дотоле мир — мир атомных частиц.

За два года до открытия Томсоном электрона Вильгельм Конрад Рентген обнаруживает невидимые лучи, проникающие сквозь любые преграды. Спустя год Анри Беккерель открывает радиоактивность. Проходят еще три года, и Макс Планк выступает со своей гипотезой о квантах энергии. Затем — небольшая передышка. И в 1905 году молодой Эйнштейн дарит миру сразу два «алмаза» первейшей величины — гипотезу о квантах света и теорию относительности.

Под бешеным натиском новых идей рушатся основы старой физики, казавшиеся тогда монолитной твердыней. Среди физиков воцаряется растерянность. Уж слишком быстро все рухнуло…

Воспаленному мозгу неискушенных исследователей начинает казаться, что в природе все дозволено. У страха глаза велики, у несдержанного любопытства — еще более. Ошеломленная публика требует каждый день новых сенсаций. Физика вдруг стала модной наукой. И кое-кто из ученых рангом помельче не выдерживает…

За шквалом истинных открытий надвигается устрашающий шквал «псевдооткрытий».


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.