Охотники за частицами - [5]
Большего опыт дать не может. Определить в нем порознь массу и заряд «лучистой субстанции» невозможно.
Но не спешите разочаровываться. Иной раз и косвенное измерение дает не менее ошеломляющий результат, чем самое прямое! А в этом измерении есть нечто ошеломляющее. Оно дает результат: отношение заряда к массе составляет для «лучистой субстанции» величину порядка десяти миллионов.
Вам непонятно, что из этого следует? Томсону тоже непонятно, но другое: как может получиться такое отношение, если для легчайшего из атомов — атома водорода — при электролизе это отношение в тысячу раз меньше. Это означает не более и не менее, что частицы «лучистой субстанции» в добрую тысячу раз легче самого легкого атома на свете. Это не лоренцовы ионы!
Вы в это можете поверить легко. А каково было Томсону? Снова и снова опыты — и опять те же цифры. Вместо накаленной алюминиевой проволочки на катод ставится медная, золотая, бронзовая, наконец, платиновая — все тот же результат. Трубка из одного стекла заменяется трубкой из другого сорта стекла — все остается по-прежнему. Наконец, накаленная металлическая нить заменяется пластинкой, облучаемой светом, — и снова отношение заряда к массе частичек «лучистой субстанции» оказывается все тем же.
Вот это и есть упрямство факта. Томсон вынужден, и с превеликой неохотой, уступить этому упрямству. С неизбежностью приходится заключить, что:
атомы отныне нельзя считать неделимыми;
из них можно вырвать отрицательно заряженные частицы под действием электрических сил, нагревания и облучения светом;
эти частицы все имеют одинаковую массу;
они несут одинаковый заряд, от каких бы атомов ни происходили;
они являются составными частями всех атомов;
масса этих частиц меньше, чем одна тысячная часть массы атома водорода.
Эти слова были произнесены Томсоном 29 апреля 1897 года на заседании Королевского института в Лондоне.
Томсон вначале назвал открытые им частицы «корпускулами» — самым невыразительным словом, которое только можно придумать! Ведь по-латыни оно лишь означает «частицы». В его оправдание можно сказать только то, что спустя три года Планк назвал открытые им «частицы» энергии столь же невыразительно — «квантами» (а это на той же латыни означает не более, как «количество»).
Но не в названиях дело. Тем более, что уже вскоре Томсон «поправился» и дал своему открытию имя, предложенное за четверть века до того ирландским физиком Стони, — «электрон». И это имя сразу прочно вошло в обиход всей последующей физики.
Один философ как-то назвал открытие «венцом любопытства». Согласиться с ним трудно. Ученый, сделав открытие, редко догадывается в ту же минуту о его истинном значении. Напротив, ученый весь во власти сомнений.
Не пал ли он жертвой неверного хода мыслей? Правильно, корректно ли, как говорят, поставлены опыты, проведены расчеты? А что дальше? Какие неожиданные миры открываются за дверью, на миг приоткрывшейся перед исследователем? Страшиться, однако, нет времени. Все чувства подчиняет себе — вот только теперь развернувшееся во всю силу — жадное любопытство. Только теперь начинается лихорадка открытия.
Нет, настоящий ученый не боится, что его кто-то обгонит. Да и кого бояться? Пока что он один на бескрайних туманных просторах нового мира, и даже его ближайшие соратники не торопятся следовать за ним. До тех пор, пока в этом мире не нащупана твердая почва, они предпочитают лишь сочувственно наблюдать за лихорадочными поисками первооткрывателя.
А вокруг тем временем идет работа. В том же 1897 году Чарлз Вильсон делает открытие, что на газовых ионах очень активно осаждается водяной пар, если газ насытить этим паром, а затем резко охладить.
«В сентябре 1894 года, — вспоминал Вильсон много лет спустя, — я несколько недель работал в обсерватории на вершине Бен Невис, самой высокой горы Шотландии. Удивительные световые явления, возникающие при освещении солнечными лучами облаков, окружающих вершину, и особенно разноцветные кольца вокруг Солнца или теней, бросаемых вершиной горы на окружающий туман или облака, чрезвычайно заинтересовали меня. Я решил получить их в лаборатории. С этой целью я проделал несколько опытов, образовывая облака путем расширения паров. Но сразу же я натолкнулся на нечто такое, что обещало стать более интересным, чем те световые эффекты, которые я намеревался изучать».
Это «нечто» и есть замечательное открытие Вильсона. Пока что оно никак не связано с открытием Томсона. Но подождите, пройдет пятнадцать лет, и открытое Вильсоном явление станет тем магическим окном, которое позволит воочию увидеть следы, оставленные электронами Томсона.
Томсон, однако, не собирается ждать, и уже в следующем году приспосабливает только что открытое явление к измерению заряда своих частиц. Он прогоняет ионы водорода и кислорода, полученные при разложении воды в электролизе, через воду же и получает целые облака заряженных частиц. Эти облака затем медленно оседают на дно, подчиняясь всепроникающей силе земного тяготения. Взвешивая осевшие облака, Томсон находит их массу и число частиц в них, откуда без особого труда находит и заряд одной частицы.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.