Охотники за частицами - [8]

Шрифт
Интервал

Обижаться? Не стоит. И Гюйгенс терпеливо ждет целых восемнадцать лет. Наконец, за пять лет до смерти, он получает свежие оттиски своего «Трактата».

В нем доказывается, что свет — это продольные волны в некоей нематериальной среде, которая впоследствии получит название эфира. Сложные геометрические построения, формулы — вот это уже не ньютоновское «ни да ни нет», а суровое и точное изложение взгляда. Теория кажется убедительной. Она, кроме того, имеет еще преимущество перед своей соперницей в том, что, в отличие от той, правильно решает задачу о преломлении света.

Но сторонников в восемнадцатом веке она почти не находит. Тут числом не возьмешь: тогда, на нашу сегодняшнюю мерку, физиков почти не было!

Первое утро девятнадцатого века видит оживление в стане сторонников волновой теории Гюйгенса. Собственно говоря, все это оживление производит один человек — англичанин Томас Юнг. Без преувеличения сказать, биография одного только Юнга могла бы снять со всех англичан обвинение в чопорности и холодном темпераменте. Циркач, музыкант, математик, языковед, физик — и все это на полном серьезе, на высочайшем уровне и в прямом и переносном смысле.

Да, такой человек может оживить целую науку! Действительно, «на минуточку» заглянув в застывший храм оптики, Юнг сразу же делает крупнейшее открытие — открывает интерференцию света. Оно и определяет крутой поворот в ходе войны обеих теорий.

Через двадцать лет — после трудов французской «могучей кучки» в составе Этьена Малю, Доминика Араго и, наконец, Огюстена Френеля — о корпускулярной «ньютоновской» теории света никто и не вспоминает. Разгром ее кажется полным и окончательным.

Вплоть до сокровенных тонкостей поведения света — все объяснила волновая теория. А спустя тридцать лет Джемс Максвелл, наконец, выясняет, что за волны — свет. Оказывается — электромагнитные.


Сомнительная победа

«Тебя погубят твои же дети» — эти знаменитые слова древнего предостережения можно начертать у дверей любой новой научной теории.

Да, это так. Научная теория переживает робкое детство и могучую юность, когда теория словно шутя расправляется с труднейшими задачами, недоступными для ее предшественниц. Со временем к ней приходит и зрелость, когда теория словно разливается вширь, охватывая новые, ею же предсказанные явления, устанавливая контакты с другими областями науки. Это время ее торжества, время наивысшего расцвета… Затем подкрадывается старость — в непрерывных сражениях с новыми фактами, открытыми благодаря самой же теории, но которые она бессильна объяснить.

Тогда наступает, на первый взгляд, застой в теории. Ее верные приверженцы выбиваются из сил, пытаясь как-то оживить ее. Другие бессильно опускают руки и уходят в другие области науки, где положение не кажется таким безнадежным.

Но остаются еще и третьи. В тиши кабинетов они вынашивают дерзкие идеи, которые уже никак не лезут в тесные рамки старой теории. Неприметные вначале, эти идеи в один действительно прекрасный день рушат стены того же дома, в котором они родились. Вот когда наука делает прыжок вперед!

Так случилось и с учением о свете в конце прошлого века. После первых внушительных побед волновой теории оптика быстро вышла на широкую практическую дорогу. И — совершенно закономерно — за решением вопроса о природе света на повестку дня стал вопрос: а как, собственно говоря, возникает сам свет?

— Стоило ли ломать голову! — воскликнет неискушенный читатель: нагрей любое тело, и оно начнет светиться.

Правильно. Это видно и без особых умственных усилий. Но все же, почему нагретые тела испускают свет?

Наш неискушенный критик, кажется, задумался. Ну ничего, пускай думает — это полезно. Десятки теоретиков думали над этим с виду простым вопросом десятки лет.

Трудностей здесь было сразу несколько. Во-первых, что испускает свет при нагревании тел? Очевидно, то, из чего они состоят, — атомы. Свет — это электромагнитные волны (что доказал Максвелл). А электромагнитные волны испускает любой электрический заряд при своем движении (Максвелл это установил «на бумаге», а Герц — в своих знаменитых опытах).

То, что атом в целом электрически нейтрален, физиков уже не смущает. Коль скоро были произнесены слова «атом в целом», то это уже доказывает, что ученые додумались до «атома не в целом». Действительно, уже кончается девятнадцатый век, идея электрона носится в воздухе и только ждет своего воплощения в открытии Томсона.

Можно перескочить через кой-какие нерешенные «мелочи» и сразу заявить: электромагнитные волны испускаются электронами, движущимися в атомах. Чем сильнее нагрето тело, тем интенсивнее это движение, тем более яркий свет вырывается из атомов.

Все? Нет, не все. Электромагнитные волны уносят с собой энергию. Откуда они ее берут? От электрона, конечно. Поэтому, излучая волны, электрон вынужден замедлять свое движение.

Теперь второе обстоятельство. В электромагнитном излучении зарядов должны, как непреложно доказывает теория, присутствовать волны всевозможных частот. Как говорят физики, спектр этого излучения должен быть непрерывным.

Если бы вы «нацелили» свой радиоприемник на такой электрон, то не было бы необходимости в его настройке: электрон был бы слышен на всех волнах. А пустив электронное излучение на призму, вы должны были бы получить сплошную цветную полосу на экране.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.