Одна формула и весь мир - [6]

Шрифт
Интервал

Теологические толкования второго закона термодинамики были обобщены в 1951 году на торжественном заседании папской Академии наук в Ватикане.

— Эта печальная необходимость,— заявил папа Пий XII, имея в виду тепловую смерть Вселенной,— красноречиво свидетельствует о существовании Необходимого Существа.

Незадолго до открытия второго закона термодинамики наука дала такое веское опровержение конца света, как закон сохранения энергии, утверждающий неуничтожимость и несотворимость материального мира. А закон возрастания энтропии фактически сводит закон о неуничтожимости и несотворимости на нет. В самом деле, что толку от вечно сохраняемой миром энергии, если она теряет главное свое качество — способность производить работу! Если вся сохраняемая навеки энергия после выравнивания температуры превращается в равномерно разлитую по миру бесполезную теплоту!

Наряду с попытками построения теологических теорий, опирающихся на теорию тепловой смерти Вселенной, делались попытки обоснования пессимистических социальных прогнозов, основой которых являлась все та же пресловутая тепловая смерть. Так, например, анализируя книгу О. Шпенглера «Закат Европы», Н. А. Бердяев писал: «...Открытия, которые делает физика нашей эпохи, характерны и для заката культуры. Энтропия, связанная со вторым законом термодинамики, радиоактивность и распадение атомов материи, закон относительности — все это колеблет прочность и незыблемость физико-математического созерцания, подрывает веру в длительное существование нашего мира. Я бы сказал, что все это — физический апокалипсис, учение о неизбежности физического конца мира, смерти мира. Лишь в эпоху заката европейской культуры возникает такое «апокалиптическое» настроение в физике... Физика наших дней может быть названа предсмертной мыслью Фауста».

Так что же можно противопоставить всепобеждающей энтропии? Дух! Бердяев считает, что только «в духовном мире надо искать незыблемости... С ним должны быть связаны наши надежды».

Надежды, конечно, слабые. Если подобной концепцией можно утешить идеалиста, то материалисту־то точно известно, что нет «духа» без «тела», и если проклятая энтропия разрушит (а вернее, обесценит) материю и энергию, то и дух перестанет существовать. Неучтожимы не только материя и энергия, но и все многообразие их форм. «...С той же самой железной необходимостью,— писал Энгельс,— с какой она (природа.— Е.С.) когда-нибудь истребит на Земле свой высший цвет — мыслящий дух, она должна будет его снова породить где-нибудь в другом месте и в другое время».

Впоследствии мы убедимся, что рождение теории информации и установление диалектического единства и противоположности информации и энтропии по-новому подтверждают сказанные Энгельсом замечательные слова.

Уяснение диалектически противоречивого взаимодействия энтропии и информации позволит нам установить сооотношение этих естественнонаучных понятий с такими философскими категориями, как материя и движение, проследить, каким образом общее свойство материи, названное В. И. Лениным способностью отражения, по мере накопления информации из сходных с ощущением простейших форм отображения внешних воздействий, присущих объектам неорганической природы, превращается сначала в способность ощущения, которой наделены простейшие организмы, затем в образное восприятие окружающего мира и, наконец, в безгранично многообразную человеческую мысль.

Пока велись горячие споры о судьбах Вселенной и о том, как должен влиять на Вселенную закон возрастания энтропии, сама энтропия совершала не столь масштабную, а весьма скромную, незаметную, будничную работу — помогала термодинамике изучать физические и химические процессы, связанные с выделением, поглощением и передачей тепла. А поскольку без теплового обмена практически не обходится ни один из подобных процессов, можно представить себе, как важна была эта будничная работа для физики, химии и всех связанных с ними областей техники. Благодаря введению энтропии все основные физические параметры исследуемых объектов (объем, давление, температуру, свободную и связанную энергию) удалось связать между собой. Оказывается, именно энтропии недоставало науке для того, чтобы все параметры объединились в системе уравнений.

С введением энтропии термодинамика стала удивительно стройной и завершенной теорией.

Да, стройной. Да, завершенной. Если бы не одно очень существенное «но». Все параметры уравнений термодинамики (объем, температуру, давление) можно было или измерить с помощью специальных приборов, или даже проверить на ощупь, или на взгляд. Но только не энтропию. Ее невозможно было не только пощупать или увидеть, но даже вообразить. Природа ее оставалась неясной. Ни сам Клаузиус, ни его последователи не могли раскрыть физической сущности энтропии. «Энтропия—есть функция состояния физических тел»,— ничего более четкого наука в то время об энтропии сказать не могла.

Пытались идти путем аналогий между «двигательной силой» тепла в тепловой машине и силой падающей и производящей работу воды. При этом разность температур сопоставлялась с разностью уровней наполненых водой резервуаров; аналогом тепла, передаваемого от нагретого тела к холодному, была масса воды. А с чем сопоставить энтропию? С весом воды? Или с ее объемом? В любом случае получалось совсем не то. И энтропия по-прежнему оставалась загадочной «функцией состояния», а как изменяется состояние тела от изменения его энтропии, никто объяснить толком не мог.


Еще от автора Евгений Александрович Седов
В начале было Слово…

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сюрпризы Карены

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.