Неметаллы не обладают металлическим блеском, хрупки, очень плохо проводят теплоту и электричество. При обычных условиях они являются или твердыми веществами (S, P, C), или газообразными (F>2 Cl>2, O>2, H>2), Br>2 – жидкость. В химических реакциях неметаллы могут проявлять как окислительные, так и восстановительные свойства (исключение составляет F>2, фтор является только окислителем в реакциях с другими веществами).
Сложные вещества делятся на классы:
во-первых, по составу (бинарные, т.е. двухэлементные; многоэлементные; кислородосодержащие; азотосодержащие и т.д.);
во-вторых, по свойствам или функциям ( по кислотно-основным, окислительно-восстановительным).
К важнейшим бинарным соединениям относятся:
оксиды – соединения элемента с кислородом;
галогениды – соединения элемента с галогеном;
нитриды – соединения элемента с азотом;
карбиды – соединения элемента с углеродом;
сульфиды – соединения элемента с серой;
гидриды – соединения металла с водородом (соединения неметаллов с водородом не рассматривают как гидриды, их относят к классу бескислородных кислот).
в результате реакций обмена
Na>2CO>3 + SiO>2 = Na>2SiO>3 + CO>2↑
К классу гидроксидов относятся соединения, содержащие одну или несколько гидроксильных групп – ОН.
Гидроксиды в свою очередь делятся на основания, кислоты (кислородосодержащие, бескислородные) и амфотерные основания. Принадлежность гидроксида к основаниям или кислотам определяется прочностью связи между элементом и кислородом и кислородом и водородом.
Если в гидроксидах связь О – Н более полярная, чем связь О – Э, то при попадании в полярный растворитель эта связь будет еще больше поляризоваться и перейдет в ионную. При диссоциации образуется катион водорода и анион так называемого кислотного остатка. Такой гидроксид относят к классу кислот:
HNO>3 = H>+ + NO>3>- ,
Н>+ протон, ион водорода, катион (положительно заряженный ион).
NO>3>- – нитрат ион, анион, кислотный остаток азотной кислоты.
Если же оказывается более полярной связь между элементом и кислородом, то в полярном растворителе при поляризации связи электронная плотность смещается в сторону кислорода и образуется гидроксильный анион (гидроксид ион) и катион элемента:
Согласно теории электролитической диссоциации к основаниям относятся электролиты, при распаде которых на ионы в качестве анионов образуются только гидроксид ионы.
KOH K>+ + OH>-
С этой точки зрения, к основаниям относят гидроксиды металлов и гидроксид аммония (NH>4OH). Название таких оснований состоит из слова гидроксид и русского названия металла в родительном падеже (на пример гидроксид натрия NaOH). Если металл образует несколько оснований, то после названия указывается степень окисления металла в скобках римскими цифрами (на пример Fe(OH)>2, Fe(OH)>3: гидроксид железа II и III соответственно. Кроме того существует и традиционные названия, так гидроксид натрия NaOH называют едкий натр, каустическая сода; KOH называют едкий кали, Ca(OH)>2 – гашеная известь.
Основания бывают растворимые в воде, малорастворимые и практически нерастворимые. Растворимые в воде основания называют щелочами.
По числу гидроксогрупп определяют кислотность основания. Так NaOH, KOH однокислотные основания; Ca(OH)>2, Fe(OH)>2 – двухкислотные; Fe(OH)>3, Al(OH)>3 – трехкислотные.
Основания двух– и более кислотные диссоциируют ступенчато:
1 ступень Ca(OH)>2 CaOH>1+ + OH>1-
2 ступень CaOH>1+ Ca>2+ + OH>1-
Получение оснований
Растворимые основания можно получить при взаимодействии щелочного (IА подгруппа) или щелочно-земельного (IIА подгруппа) металла с водой или оксида металла с водой:
2Na + 2H>2O = 2NaOH + H>2
Na>2O + H>2O = 2NaOH
Ca+2H>2O=Ca(OH)>2+H>2
2) Малорастворимые основания получаются при взаимодействии соли соответствующего катиона с растворимым основанием:
FeSO>4 + 2NaOH = Fe(OH)>2 + Na>2SO>4
Свойства оснований
Неорганические основания являются твердыми веществами, за исключением гидроксида аммония. Растворы оснований мыльные на ощупь, изменяют окраску индикатора фенолфталеина в малиновый цвет, а лакмуса – в синий.
Гидроксиды калия и натрия устойчивы к нагреванию. Большинство оснований разлагаются при нагревании на воду и соответствующий оксид
2.ОСНОВАНИЯ, КИСЛОТЫ, СОЛИ.
2.1Основания
По теории электролитической диссоциации к основаниям относятся электролиты, при электролитической диссоциации которых в качестве анионов образуются только гидроксид-ионы.
Кислотные оксиды взаимодействуют с основными оксидами и гидроксидами. В результате этого взаимодействия образуются соли:
SO>3 + CaO = CaSO>4
SO>3 + Ca(OH)>2 = CaSO>4 + H>2O
К амфотерным относят оксиды, которые могут проявлять свойства как основных оксидов, так и кислотных. То есть амфотерный оксид может взаимодействовать как с кислотой, так и с основанием. Амфотерные оксиды образуются некоторыми металлами в степени окисления +2 (BeO, ZnO, SnO, PbO) и почти всеми металлами в степени окисления +3 (Al>2O>3, Cr>2O>3).
ZnO + 2HCl = ZnCl>2 + H>2O
ZnO + 2NaOH = Na>2ZnO>2 + H>2O
цинкат натрия
Амфотерным оксидам соответствуют амфотерные гидроксиды.
Если металл может иметь несколько степеней окисления, то с повышением степени окисления основные свойства его оксидов будут убывать, а кислотные усиливаться. Так MnO основной оксид, MnO