Обратные вызовы в C++ - [44]

Шрифт
Интервал

>  void setReadValue(OnReadValue value);      // (6)

>  void setOperable(OnOperable operable);     // (7)


>  SensorValue readSpot(SensorNumber number) override;       // (8)

>  SensorValue readSmooth(SensorNumber number) override;     // (9)

>  SensorValue readDerivative(SensorNumber number) override; // (10)


>  static IDriver* create();


>protected:

>  DriverSimulation();


>private:

>  OnReadValue getValue_;         // (11)

>  OnOperable getOperable_;       // (12)

>  SensorValue defaultValue_ = 0; // (13)

>  bool defaultOperable_ = true;  // (14)

>};


В строке 1 объявляется перечисление для указания используемого метода чтения показателей. В строке 2 и 3 объявляются типы для обратных вызовов. Переменные соответствующих типов для хранения вызовов объявлены в строках 11 и 12. Настройка вызовов производится в методах 6 и 7. Кроме того, объявляются переменные для хранения значений по умолчанию (строки 13 и 14), эти переменные настраиваются в методах 4 и 5.

Реализацию чтения показателей продемонстрируем на примере получения текущего значения датчика (Листинг 90).

Листинг 90. Чтение текущего значения датчика в имитируемом драйвере (DriverImpl.cpp)

>SensorValue DriverSimulation::readSpot(SensorNumber number)

>{

>  if (getValue_)  // (1)

>  {

>    return getValue_(number, READ_SPOT);  // (2)

>  }

>  else

>  {

>    return defaultValue_;  // (3)

>  }

>}


В строке 1 проверяется, настроен ли обратный вызов. Если настроен, то через него запрашивается значение для соответствующего датчика. Информацией вызова здесь является номер датчика и метод чтения показателей (строка 2). Если обратный вызов не настроен, то возвращается значение по умолчанию (строка 3).

6.2.4. Датчик

Обобщенный интерфейсный класс для работы с датчиком приведен в Листинг 91.

Листинг 91. Интерфейсный класс для роботы с датчиком (SensorInterface.h)

>namespace sensor

>{


>class ISensor

>{

>public:

>  virtual void setDriver(DriverPointer driverPointer) = 0;  // (1)

>  virtual DriverPointer getDriver() = 0;  // (2)


>  virtual double getValue() = 0;  // (3)

>  virtual bool isOperable() = 0;  // (4)


>  virtual ~ISensor() = default;


>  static SensorPointer createSensor(SensorType type, SensorNumber number, DriverPointer driverPointer);  // (5)


>};


>}; //namespace sensor


В строке 1 объявлен метод для настройки драйвера, с которым будет работать датчик. Получить используемый драйвер можно с помощью метода 2. В строках 3 и 4 объявлены методы для получения текущего значения датчика и определения его работоспособности. В строке 5 объявлен метод для создания экземпляра класса соответствующего типа.


В соответствии с требованиями нам необходимо реализовать датчики, которые бы возвращали текущие, сглаженные и производные значения показателей. Для каждого способа реализован отдельный класс; диаграмма классов изображена на Рис. 29.


Рис. 29. Диаграмма классов, реализующих управление датчиками


Как видно из диаграммы, при вызове метода для получения значения датчик обращается к драйверу, вызывая соответствующие методы. В зависимости от настроенного драйвера будут возвращаться реальные или имитируемые значения.


6.2.5. Контейнер

Контейнер предназначен для хранения экземпляров классов для управления датчиками. Объявление класса приведено в Листинг 92.

Листинг 92. Объявление контейнера (SensorContainer.h)

>namespace sensor

>{

>  class ISensor;


>  class SensorContainer

>  {

>  public:

>    void addSensor(SensorNumber number, SensorPointer sensor);  // (1)

>    void deleteSensor(SensorNumber number);                     // (2)

>    SensorPointer checkSensorExist(SensorNumber number);        // (3)

>    SensorPointer findSensor(SensorNumber number);              // (4)


>    template

>    void forEachSensor(CallbackIterate&& callback)  // (5)

>    {

>      for (auto item : container_)                // (6)

>      {

>        callback(item.first, item.second);

>      }

>    }

>private:

>    std::map container_;  // (7)

>  };


>};


Хранилище объектов реализовано в виде двоичного дерева (строка 7). Ключом здесь выступает номер датчика, содержимым является указатель на класс управления датчиком. Методы для добавления и удаления указателей объявлены в строках 1 и 2.

Метод в строке 3 возвращает указатель на объект класса, если последний с заданным номером содержится в хранилище, в противном случае возвращается нулевой указатель. Метод в строке 4 возвращает указатель на объект класса для соответствующего номера; если объект отсутствует, то генерируется исключение.

Метод 5 предназначен для итерации по всем хранимым объектам. Здесь используется обратный синхронный вызов (см. п. 1.4.1) по схеме «перебор элементов» (см. п. 1.2.3). Реализация осуществляет перебор всех элементов хранилища, для каждого элемента выполняется соответствующий вызов. Метод реализован в виде шаблона, что позволяет его использование для различных типов объектов. Входным параметром метода выступает объект вызова, объявленный как ссылка на r-value. Такое объявление позволяет передавать выражения или временные копии объектов.

6.2.6. Асинхронные запросы

Для реализации асинхронных запросов объявляется очередь, в которую помещаются все поступающие запросы. Обработка очереди происходит в отдельном потоке. Поток извлекает очередной запрос и для него выполняет обратный вызов. Объявление класса для выполнения асинхронных вызовов приведено в Листинг 93.


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.