Новый ум короля: О компьютерах, мышлении и законах физики - [65]
Читателю, однако, не понадобится много времени, чтобы сообразить, что эта парадигма сложности была создана специально для наших глаз волшебством вычислительных технологий с использованием современных быстродействующих компьютеров. А не являются ли компьютеры истинным воплощением алгоритмических действий? Конечно, это так, но все же мы должны принимать во внимание способ, с помощью которого компьютеры, в действительности, создают эти картинки. Чтобы проверить, принадлежит точка плоскости Аргана — комплексное число с — множеству Мандельброта (закрашено черным) или его дополнению (светлая область), компьютер, начиная с нуля, применит отображение
z → z>2 + с
сначала к z = 0, чтобы получить с; потом к z = с, чтобы получить с>2 + с; затем к z = с>2 + с, чтобы получить с>4 + 2с>3 + с>2 + с; и так далее. Если эта последовательность 0, с, с>2 + с, с>4 + 2с>3 + с>2 + с… остается ограниченной, то соответствующая точка с будет черной; в противном случае — белой. Как машина определяет, что такая последовательность остается ограниченной? В принципе, этот вопрос предполагает наличие информации о том, что происходит после бесконечного числа ее элементов! Сама по себе эта задача вычислительными методами не решается. К счастью, существуют способы предсказать исходя уже из конечного числа членов, когда последовательность станет неограниченной. (На самом деле, если последовательность достигает окружности радиуса 1 + √2 с центром в начале координат, можно с уверенностью сказать, что она будет неограниченной.)
Таким образом, дополнение к множеству Мандельброта является, в некотором смысле, рекурсивно нумеруемым. Если комплексное число с расположено в светлой области, то существует алгоритм, подтверждающий этот факт. А как насчет самого множества Мандельброта — темного участка рисунка? Существует ли алгоритм, способный точно установить, что точка, принадлежащая предположительно темному участку, действительно ему принадлежит? Ответ на этот вопрос в настоящее время, похоже, отсутствует[85]. Я справлялся у многих коллег и экспертов, но ни один из них не слышал о подобном алгоритме. Равно как и никто из них не сталкивался с указанием на то, что такого алгоритма не существует. По крайней мере, насколько можно об этом судить, алгоритм для темной области на сегодняшний день неизвестен. Возможно, множество, дополнительное по отношению к множеству Мандельброта, действительно является примером рекурсивно нумеруемого, но не рекурсивного множества!
Прежде чем исследовать дальше это предположение, необходимо будет обсудить некоторые моменты, которые я ранее опускал. Эти вопросы будут довольно важны для нас в дальнейших рассуждениях по поводу вычислимости в физике. Я хотел бы заметить, что, на самом деле, я был несколько неточен в предшествующем изложении. Я применял такие понятия, как «рекурсивно нумеруемый» и «рекурсивный», к множествам точек в плоскости Аргана, т. е. множествам комплексных чисел. Но эти термины могут применяться только лишь для натуральных чисел и других счетных множеств. Мы видели в третьей главе («Сколько же всего действительных чисел»), что действительные числа не могут быть счетным множеством, равно как, следовательно, и комплексные — ведь любое действительное число может быть рассмотрено как частный случай некоторого комплексного числа с нулевой мнимой частью (гл.3 «Комплексные числа»). В действительности существует такое же «количество» комплексных чисел, как и действительных, а именно «С». (Чтобы установить взаимнооднозначное соответствие между комплексными и действительными числами, можно, грубо говоря, просто взять действительную и мнимую части комплексного числа (записанные в десятичной форме) и перемешать через одну поразрядно цифры из мнимой части с цифрами из вещественной, образуя, тем самым, действительное число: тогда, например, 3,6781…+ i512,975… будет соответствовать действительному числу 50 132,6977851…)
Дабы избежать этой проблемы, можно было бы ограничиться только вычислимыми комплексными числами, так как мы еще в третьей главе видели, что вычислимые действительные числа — а значит, и соответствующие им комплексные — являются счетными. Однако здесь кроется одна принципиальная трудность: не существует алгоритма, с помощью которого можно было бы сравнивать два вычислимых числа, полученных алгоритмически! (Мы можем алгоритмическим образом составить их разность, но мы не в состоянии будем выяснить, равна она нулю или нет. Представьте себе два алгоритма, которые генерируют цифры 0,99999… и 1,00000…, соответственно; мы никогда не узнаем, продолжаются ли нули и девятки в них до бесконечности — так, что числа оказываются равными — или же где-то в дробной части того или другого числа могут появиться иные цифры, делая эти числа неравными.) Таким образом, мы, возможно, никогда не сможем определить, равны ли между собой такие числа. Как следствие этого — наша неспособность решить даже в таком простом случае как единичный круг в плоскости Аргана (множество точек, лежащих на расстоянии не большем единицы от начала координат — черная фигура на рис. 4.4), лежит ли комплексное число в этом круге или нет.
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
Верно ли, что речь, обращенная к другому – рассказ о себе, исповедь, обещание и прощение, – может преобразить человека? Как и когда из безличных социальных и смысловых структур возникает субъект, способный взять на себя ответственность? Можно ли представить себе радикальную трансформацию субъекта не только перед лицом другого человека, но и перед лицом искусства или в работе философа? Книга А. В. Ямпольской «Искусство феноменологии» приглашает читателей к диалогу с мыслителями, художниками и поэтами – Деррида, Кандинским, Арендт, Шкловским, Рикером, Данте – и конечно же с Эдмундом Гуссерлем.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Лешек Колаковский (1927-2009) философ, историк философии, занимающийся также философией культуры и религии и историей идеи. Профессор Варшавского университета, уволенный в 1968 г. и принужденный к эмиграции. Преподавал в McGill University в Монреале, в University of California в Беркли, в Йельском университете в Нью-Хевен, в Чикагском университете. С 1970 года живет и работает в Оксфорде. Является членом нескольких европейских и американских академий и лауреатом многочисленных премий (Friedenpreis des Deutschen Buchhandels, Praemium Erasmianum, Jefferson Award, премии Польского ПЕН-клуба, Prix Tocqueville). В книгу вошли его работы литературного характера: цикл эссе на библейские темы "Семнадцать "или"", эссе "О справедливости", "О терпимости" и др.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое событие?» — этот вопрос не так прост, каким кажется. Событие есть то, что «случается», что нельзя спланировать, предсказать, заранее оценить; то, что не укладывается в голову, застает врасплох, сколько ни готовься к нему. Событие является своего рода революцией, разрывающей историю, будь то история страны, история частной жизни или же история смысла. Событие не есть «что-то» определенное, оно не укладывается в категории времени, места, возможности, и тем важнее понять, что же это такое. Тема «события» становится одной из центральных тем в континентальной философии XX–XXI века, века, столь богатого событиями. Книга «Авантюра времени» одного из ведущих современных французских философов-феноменологов Клода Романо — своеобразное введение в его философию, которую сам автор называет «феноменологией события».