Новый ум короля: О компьютерах, мышлении и законах физики - [64]
Эти свойства с очевидностью демонстрируют, что наша формальная система не может быть полной: то есть всегда будут существовать утверждения, чью справедливость (или ложность) невозможно доказать в рамках системы. Ведь если предположить, что такие «неразрешимые» утверждения не существуют, то дополнение множества Р с необходимостью было бы множеством опровергаемых утверждений (все, что недоказуемо, обязано быть опровергаемо). Но мы уже знаем, что опровергаемые утверждения составляют рекурсивно нумеруемое множество, что делает Ррекурсивным. Однако, Р не рекурсивно — противоречие, которое доказывает требуемую неполноту. Это основное утверждение теоремы Геделя.
А как насчет подмножества T множества N, которое состоит из истинных утверждений нашей формальной системы? Рекурсивно ли T? Или оно только рекурсивно нумеруемо? А его дополнение? Оказывается, что ответ на все эти вопросы — отрицательный. Один из способов установить это — воспользоваться сделанным ранее выводом о невозможности алгоритмически сгенерировать ложные утверждения вида «Т>n(n) останавливается». Как следствие, ложные утверждения в целом не могут быть получены с помощью алгоритма, поскольку такой алгоритм, в частности, пронумеровал бы все вышеупомянутые ложные «Т>n(n) останавливается»-утверждения. Аналогично, и множество всех истинных утверждений не может быть построено при помощи алгоритма (так как любой подобный алгоритм легко модифицируется для нахождения ложных утверждений путем отрицания каждого из генерируемых им утверждений).
Поскольку, тем самым, истинные утверждения не являются (равно как и ложные) рекурсивно нумеруемыми, то они образуют гораздо более глубокий и сложноорганизованный массив, чем утверждения, имеющие доказательство внутри системы. И это иллюстрирует еще один аспект теоремы Геделя: что понятие математической истины только частично досягаемо в рамках любой формальной системы.
Существуют некоторые простые классы истинных арифметических утверждений, которые все же образуют рекурсивно нумеруемые множества. Например, как это нетрудно видеть, истинные утверждения вида
E>к.с.ω, x…, z[f (ω, x,…,z) = 0],
где f () — некоторая функция, построенная из обычных арифметических операций сложения, вычитания, умножения и возведения в степень, составляют рекурсивно нумеруемые множества[83] (которые я обозначу через А). Пример утверждения такого рода — хотя мы не знаем, верно ли оно — это отрицание последней теоремы Ферма[84]., для которой мы можем взять за f () функцию
f (ω, х, у, z) = (х+1)>ω+3 + (у+1)>ω+3- (z+1)>ω+3.
Однако, множество А не является рекурсивным (факт, который не так легко установить, хотя он и вытекает из оригинального доказательства Геделя). Значит, мы не имеем никаких алгоритмических средств для выяснения — хотя бы в принципе — истинности или ложности последней теоремы Ферма.
Рис. 4.1. Очень схематичное представление рекурсивного множества
На рис. 4.1 я попытался схематически представить рекурсивное множество как фигуру с простой и изящной границей, так что кажется, что определить непосредственно принадлежность произвольной точки этому множеству — дело несложное. Каждая точка на рисунке соответствует некоторому натуральному числу. При этом дополнительное множество также представлено в виде просто выглядящей области на плоскости. На рис. 4.2 я постарался изобразить рекурсивно нумеруемое, но не рекурсивное множество в виде области со сложной границей, где подразумевается, что множество с одной стороны границы, — той, что рекурсивно нумеруема — должно выглядеть проще, чем с другой.
Рис. 4.2. Очень схематичное представление рекурсивно нумеруемого множества (темная область), которое не является рекурсивным. Здесь светлая область определяется только по «остаточному принципу», когда удаляется темная часть, построенная при помощи вычислений; а установить путем прямых вычислений, принадлежит ли заданная точка белой области, нельзя
Фигуры очень схематичны и не претендуют на какую бы то ни было «геометрическую аккуратность». И конечно же, не стоит придавать большого значения тому, что эти рисунки изображены так, как если бы они были расположены на двумерной плоскости!
На рис. 4.3 я схематично обозначил, как расположены области Р, Т и А внутри множества N.
Рис. 4.3. Очень схематичное представление различных множеств утверждений. Множество Р утверждений, доказуемых в рамках системы, является, как и А, рекурсивно нумеруемым, но не рекурсивным. Множество Т истинных утверждений даже не рекурсивно нумеруемо
Является ли множество Мандельброта рекурсивным?
Существенной характеристикой нерекурсивных множеств является их сложноорганизованность. Это свойство должно, в некотором смысле, препятствовать любым попыткам систематизации, которая, в противном случае, привела бы к некоторой «работающей» алгоритмической процедуре. Для нерекурсивного множества не существует общего алгоритмического пути к решению вопроса о принадлежности ему произвольного элемента (или «точки»), В начале третьей главы мы встретились с неким чрезвычайно сложно выглядящим множеством — с множеством Мандельброта. Хотя правила, по которым оно строится, поразительно просты, само множество представляет собой бесконечное разнообразие в высшей степени замысловатых структур. Может ли это быть примером настоящего нерекурсивного множества, явленного глазам смертных?
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое событие?» — этот вопрос не так прост, каким кажется. Событие есть то, что «случается», что нельзя спланировать, предсказать, заранее оценить; то, что не укладывается в голову, застает врасплох, сколько ни готовься к нему. Событие является своего рода революцией, разрывающей историю, будь то история страны, история частной жизни или же история смысла. Событие не есть «что-то» определенное, оно не укладывается в категории времени, места, возможности, и тем важнее понять, что же это такое. Тема «события» становится одной из центральных тем в континентальной философии XX–XXI века, века, столь богатого событиями. Книга «Авантюра времени» одного из ведущих современных французских философов-феноменологов Клода Романо — своеобразное введение в его философию, которую сам автор называет «феноменологией события».
В книге, название которой заимствовано у Аристотеля, представлен оригинальный анализ фигуры животного в философской традиции. Животность и феномены, к ней приравненные или с ней соприкасающиеся (такие, например, как бедность или безумие), служат в нашей культуре своего рода двойником или негативной моделью, сравнивая себя с которой человек определяет свою природу и сущность. Перед нами опыт не столько даже философской зоологии, сколько философской антропологии, отличающейся от классических антропологических и по умолчанию антропоцентричных учений тем, что обращается не к центру, в который помещает себя человек, уверенный в собственной исключительности, но к периферии и границам человеческого.
Опубликовано в журнале: «Звезда» 2017, №11 Михаил Эпштейн Эти размышления не претендуют на какую-либо научную строгость. Они субъективны, как и сама мораль, которая есть область не только личного долженствования, но и возмущенной совести. Эти заметки и продиктованы вопрошанием и недоумением по поводу таких казусов, когда морально ясные критерии добра и зла оказываются размытыми или даже перевернутыми.
Книга содержит три тома: «I — Материализм и диалектический метод», «II — Исторический материализм» и «III — Теория познания».Даёт неплохой базовый курс марксистской философии. Особенно интересена тем, что написана для иностранного, т. е. живущего в капиталистическом обществе читателя — тем самым является незаменимым на сегодняшний день пособием и для российского читателя.Источник книги находится по адресу https://priboy.online/dists/58b3315d4df2bf2eab5030f3Книга ёфицирована. О найденных ошибках, опечатках и прочие замечания сообщайте на [email protected].
Эстетика в кризисе. И потому особо нуждается в самопознании. В чем специфика эстетики как науки? В чем причина ее современного кризиса? Какова его предыстория? И какой возможен выход из него? На эти вопросы и пытается ответить данная работа доктора философских наук, профессора И.В.Малышева, ориентированная на специалистов: эстетиков, философов, культурологов.