Новый ум короля: О компьютерах, мышлении и законах физики - [62]
E>к.с.x[K(х)] является истинным. (Если бы такого числа не было, то наша операция повторялась бы «бесконечно»[81]), стараясь обнаружить несуществующее x.) В любом случае, предшествующие рассуждения показывают, что, исходя из результатов Тьюринга, программа Гильберта по сведению целых разделов математики к вычислениям в рамках некоторой формальной системы — невыполнима.
Как оказывается, эта процедура не может с очевидностью установить, что мы имеем утверждение Геделя (наподобие P>k(k), которое верно, но внутри системы недоказуемо. Однако, если вспомнить доказательство, приведенное в главе 2 и показывающее, «как „перехитрить“ алгоритм» (см. подглаву «Как превзойти алгоритм»), то мы увидим, что можно сделать нечто похожее и в этом случае. В том доказательстве мы смогли выяснить, что для любого алгоритма, определяющего момент остановки машины Тьюринга, можно придумать такое действие машины, которое не прекращается, хотя алгоритм — в отличие от нас — «увидеть» это не способен. (Вспомните, что мы требовали от алгоритма корректно информировать нас о моменте, когда машина Тьюринга действительно остановится, хотя мы допускаем, что он может не оповестить нас, если машина на самом деле не прекратит свое действие, продолжая работать вечно.) Таким образом, как и в ситуации с теоремой Геделя, у нас есть утверждение (безостановочное действие машины Тьюринга), истинность которого мы можем установить при помощи интуитивного понимания, хотя определенная алгоритмическая процедура нам такой возможности и не дает.
Рекурсивно нумеруемые множества
Существует способ для описания основных результатов, полученных Геделем и Тьюрингом, в графическом виде, на языке теории множеств. Это позволит нам избежать произвольности описания в терминах конкретного символизма или в рамках формальной системы и выделить наиболее существенное. Мы будем рассматривать только множества натуральных чисел (конечные или бесконечные), такие как {4,5,8}, {0,57,100003}, {6}, {0}, {1,2,3,4….,9999}, {1,2, 3,4…. }, {0,2,4,6,8…. } ит. п.; или даже все множество N = {0,1,2,3,4… }, равно как и пустое множество ø = {}. Нас будут интересовать только вопросы вычислимости, скажем: «Какие множества натуральных чисел могут быть сгенерированы с помощью алгоритма, а какие — нет?»
Чтобы сформулировать такой вопрос, мы можем считать, что каждое отдельное число n обозначает определенную строчку символов некоторой формальной системы.
Это будет n-я строка символов, скажем, Q>n, согласно заданному в системе лексикографическому порядку («синтаксически корректных») утверждений. Тогда каждое натуральное число будет представлять некое утверждение. При этом множество всех утверждений формальной системы соответствует всему множеству натуральных чисел; а, допустим, теоремы этой системы будут составлять некоторое меньшее множество натуральных чисел, скажем, множество Р. Однако детали произвольной системы нумерации утверждений для нас несущественны. Все, что нам потребуется для установления соответствия между натуральными числами и утверждениями — это заданный алгоритм получения каждого утверждения Q>n (записанного должным образом в символических обозначениях) из отвечающего ему натурального числа n; и другой алгоритм для получения n из Q>n. Имея эти алгоритмы в своем распоряжении, мы вольны идентифицировать множество натуральных чисел с множеством утверждений конкретной формальной системы.
Давайте выберем формальную систему достаточно непротиворечивую и широкую для того, чтобы включать в себя все действия всех машин Тьюринга — и, более того, «имеющую смысл» с учетом требования «самоочевидной справедливости» ее аксиом и правил вывода. Далее, пусть ряд утверждений Q>0, Q>1, Q>2…. формальной системы имеет доказательства внутри системы. Эти «доказуемые» утверждения будут иметь номера, которые составляют некоторое множество в N — по сути, это множество Р «теорем», рассмотренных выше. Мы уже видели, что существует алгоритм для последовательного построения всех утверждений произвольно заданной формальной системы, имеющих доказательства. (Как отмечено ранее, «n-е доказательство» П>n получается из n алгоритмически. Все, что нам надо — это посмотреть на последнюю строчку n-го доказательства, чтобы найти «n-е утверждение, доказуемое в рамках системы», т. е. n-ю «теорему».) Следовательно, мы имеем алгоритм последовательной генерации элементов Р (при которой возможны и повторения, что для нас не важно).
Множество типа Р, которое может быть построено с помощью некоторого алгоритма, называется рекурсивно нумеруемым. Заметьте, что множество утверждений, ложность которых может быть установлена в рамках системы — т. е. утверждений, чьи отрицания являются справедливыми — точно так же рекурсивно нумеруемо, поэтому мы можем просто нумеровать доказуемые утверждения по мере продвижения, учитывая и их отрицания. Есть большое число других, тоже рекурсивно нумеруемых, подмножеств
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое событие?» — этот вопрос не так прост, каким кажется. Событие есть то, что «случается», что нельзя спланировать, предсказать, заранее оценить; то, что не укладывается в голову, застает врасплох, сколько ни готовься к нему. Событие является своего рода революцией, разрывающей историю, будь то история страны, история частной жизни или же история смысла. Событие не есть «что-то» определенное, оно не укладывается в категории времени, места, возможности, и тем важнее понять, что же это такое. Тема «события» становится одной из центральных тем в континентальной философии XX–XXI века, века, столь богатого событиями. Книга «Авантюра времени» одного из ведущих современных французских философов-феноменологов Клода Романо — своеобразное введение в его философию, которую сам автор называет «феноменологией события».
В книге, название которой заимствовано у Аристотеля, представлен оригинальный анализ фигуры животного в философской традиции. Животность и феномены, к ней приравненные или с ней соприкасающиеся (такие, например, как бедность или безумие), служат в нашей культуре своего рода двойником или негативной моделью, сравнивая себя с которой человек определяет свою природу и сущность. Перед нами опыт не столько даже философской зоологии, сколько философской антропологии, отличающейся от классических антропологических и по умолчанию антропоцентричных учений тем, что обращается не к центру, в который помещает себя человек, уверенный в собственной исключительности, но к периферии и границам человеческого.
Опубликовано в журнале: «Звезда» 2017, №11 Михаил Эпштейн Эти размышления не претендуют на какую-либо научную строгость. Они субъективны, как и сама мораль, которая есть область не только личного долженствования, но и возмущенной совести. Эти заметки и продиктованы вопрошанием и недоумением по поводу таких казусов, когда морально ясные критерии добра и зла оказываются размытыми или даже перевернутыми.
Книга содержит три тома: «I — Материализм и диалектический метод», «II — Исторический материализм» и «III — Теория познания».Даёт неплохой базовый курс марксистской философии. Особенно интересена тем, что написана для иностранного, т. е. живущего в капиталистическом обществе читателя — тем самым является незаменимым на сегодняшний день пособием и для российского читателя.Источник книги находится по адресу https://priboy.online/dists/58b3315d4df2bf2eab5030f3Книга ёфицирована. О найденных ошибках, опечатках и прочие замечания сообщайте на [email protected].
Эстетика в кризисе. И потому особо нуждается в самопознании. В чем специфика эстетики как науки? В чем причина ее современного кризиса? Какова его предыстория? И какой возможен выход из него? На эти вопросы и пытается ответить данная работа доктора философских наук, профессора И.В.Малышева, ориентированная на специалистов: эстетиков, философов, культурологов.