Новый ум короля: О компьютерах, мышлении и законах физики - [47]

Шрифт
Интервал

обоснования в природе.

Имея квадратный корень из -1, можно без особого труда получить квадратные корни для всех действительных чисел. Если а является положительным действительным числом, то величина i х √a есть квадратный корень из отрицательного действительного числа — а. (У этого числа есть еще другой квадратный корень, а именно — i х √а.) Ну, а что же можно сказать о самом числе i ? Есть ли у него квадратный корень? Разумеется есть, поскольку, как легко проверить, величина

1+i /√2

(равно как и та же величина, взятая с отрицательным знаком), будучи возведена в квадрат, равна i. А у этой величины, в свою очередь, есть квадратный корень? Ответ опять положительный: квадрат числа

 или того же числа, взятого с отрицательным знаком, действительно равен (1 + i)/√2.

Обратите внимание, что при образовании такого рода величин мы позволили себе складывать действительные и мнимые числа, а также умножать наши числа на произвольные действительные числа (или делить их на произвольные ненулевые действительные числа, а это то же самое, что умножать их на обратные величины). Получаемые таким образом объекты называются комплексными числами. Комплексное число это число вида: а + ib, где а и b — это действительные числа, называемые, соответственно, действительной и мнимой частью комплексного числа. Правила сложения и умножения двух таких чисел вытекают из обычных правил (школьной) алгебры с одним дополнительным правилом i >2 = — 1:

(а + ib) + (с + id) = (а + с) + i(b + d),

(а + ib) х (с + id) = (ас — bd) + i(ad + bc).

Удивительное дело: к созданию этой системы чисел нас подтолкнуло желание иметь возможность извлечения квадратных корней из любых чисел. Эта цель достигнута, хотя само по себе это еще не очевидно. Но новая система чисел позволяет делать гораздо больше: безнаказанно извлекать кубические корни, корни пятой степени, корни девяносто девятой степени, корни π-й степени, корни степени 1 + i и т. д. (это смог доказать еще в XVIII веке великий математик Леонард Эйлер). В качестве другого примера волшебных свойств комплексных чисел рассмотрим довольно сложные на вид тригонометрические формулы, которые проходят в школе. Так, синус и косинус суммы двух углов

sin (А + В) = sin A cos В + cos A sin В,

cos (А + В) = cos A cos В — sin A sin В

представляют собой, соответственно, просто-напросто мнимую и действительную части гораздо более простого (и легче запоминаемого!) комплексного уравнения[62]:

e >iA+iB= e >iA e >iB

Все, что нам нужно здесь знать, это «формула Эйлера» (по-видимому, полученная за много лет до Эйлера замечательным английским математиком XVI века Роджером Котсом):

e >iA= cosA+i sinA,

которую мы теперь подставим в приведенное выше уравнение. В результате имеем:

cos (А + B) + i sin (А + В) = (cosА + i sinA)(cosВ + i sinВ),

и, выполнив умножение в правой части, получим искомые тригонометрические соотношения.

Более того, любое алгебраическое уравнение

(где a>0, a>1, a>2….,a>n являются комплексными числами и a>n≠ 0) всегда имеет своим решением некоторое комплексное число z. Например, существует комплексное число, удовлетворяющее соотношению:

z>102 + 999z>33 — πz>2 = — 417 +i, хотя это совершенно не очевидно!

Это общее свойство иногда называют «основной теоремой алгебры». Многие математики XVIII века старались доказать этот результат. Получить удовлетворительное доказательство в общем случае оказалось не под силу даже Эйлеру. И только в 1831 году великий математик и естествоиспытатель Карл Фридрих Гаусс предложил потрясающий по своей оригинальности ход рассуждений и представил первое общее доказательство. Ключевым компонентом этого доказательства было применение топологических[63] рассуждений к геометрическому представлению комплексных чисел.

На самом деле Гаусс не был первым, кто использовал геометрическое представление комплексных чисел. Уоллис сделал то же самое примерно за двести лет до Гаусса, хотя далеко не столь результативно. Геометрическое представление комплексных чисел обычно связывают с именем Жана Робера Аргана — швейцарского бухгалтера, описавшего это представление в 1806 году, хотя полное описание этого представление было на самом деле дано девятью годами раньше норвежским геодезистом Каспаром Весселем. Согласно этой традиционной (хотя и не совсем правильной с исторической точки зрения) терминологии, я буду называть стандартное геометрическое представление комплексных чисел плоскостью Аргана.

Плоскость Аргана представляет собой обычную евклидову плоскость со стандартными декартовыми координатами x и y, где x обозначает расстояние по горизонтали (положительное вправо и отрицательное влево), а у — расстояние по вертикали (положительное вверху и отрицательное внизу). В этом случае комплексное число z = х + iy представляется точкой на плоскости Аргана с координатами (x, y) (рис. 3.8).

Рис. 3.8. Изображение комплексного числа z = х + iy на плоскости Аргана

Обратите внимание, что число 0 (рассматриваемое как комплексное число) соответствует началу координат, а число 1 — одной из точек на оси х.

Плоскость Аргана есть просто способ геометрически наглядной организации семейства комплексных чисел. Такое представление не является для нас чем-то совершенно новым. Мы уже знакомы с геометрическим представлением


Еще от автора Роджер Пенроуз
Большое, малое и человеческий разум

Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.


Тени разума. В поисках науки о сознании

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.


Рекомендуем почитать
Путь Карла Маркса от революционного демократа к коммунисту

Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.


Тот, кто убил лань

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дзэн как органон

Опубликовано в монографии: «Фонарь Диогена. Проект синергийной антропологии в современном гуманитарном контексте». М.: Прогресс-Традиция, 2011. С. 522–572.Источник: Библиотека "Института Сенергийной Антрополгии" http://synergia-isa.ru/?page_id=4301#H)


Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.

Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.


Традиция и революция

С 1947 года Кришнамурти, приезжая в Индию, регулярно встречался с группой людей, воспитывавшихся в самых разнообразных условиях культуры и дисциплины, с интеллигентами, политическими деятелями, художниками, саньяси; их беседы проходили в виде диалогов. Беседы не ограничиваются лишь вопросами и ответами: они представляют собой исследование структуры и природы сознания, изучение ума, его движения, его границ и того, что лежит за этими границами. В них обнаруживается и особый подход к вопросу о духовном преображении.Простым языком раскрывается природа двойственности и состояния ее отсутствия.


Снежное чувство Чубайса; Чубайсу - 49

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.