Новый ум короля: О компьютерах, мышлении и законах физики - [48]
u = 1 + i 1,3, v = -2 + i, w = -1,5 — i 0,4.
Рис. 3.9. Расположение чисел u = 1 + i1,3, v = -2 + i, ω = -1,5 — i0,4 на плоскости Аргана
Теперь основные алгебраические операции сложения и умножения комплексных чисел приобретают ясную геометрическую интерпретацию. Рассмотрим сначала сложение. Предположим, что u и v это два комплексных числа, представленные на плоскости Аргана в соответствии с описанной выше схемой. Тогда сумма этих двух чисел u + v представляется «векторной суммой» двух точек, то есть точка u + v находится на месте недостающей вершины параллелограмма, образованного точками u, v и началом координат 0. Нетрудно убедиться, что эта конструкция (рис. 3.10) действительно дает сумму двух чисел, но соответствующее доказательство я здесь опускаю.
Рис. 3.10. Сумма u + v двух комплексных чисел определяется по правилу параллелограмма
Произведение uv двух комплексных чисел тоже имеет простую, хотя и, быть может, несколько менее очевидную геометрическую интерпретацию (рис. 3.11). (Я опять опускаю доказательство.)
Рис. 3.11. Произведение uv двух комплексных чисел u и v — это такое число, что треугольник, образованный точками 0, v и uv, подобен треугольнику, образованному точками 0, 1 и u. То же самое можно сформулировать иначе: расстояние точки uv от 0 равно произведению расстояний от 0 до точек u и v, а угол между uv и действительной (горизонтальной) осью равен сумме углов между этой осью и отрезками к точкам и и v
Угол при начале координат между 1 и uv равен сумме углов между 1 и v и между 1 и u (все углы измеряются против часовой стрелки), а расстояние точки uv от начала координат равно произведению расстояний от начала координат до u и v. Это эквивалентно утверждению, что треугольник, образованный точками 0, v и uv подобен (и ориентирован подобно) треугольнику, образованному точками 0, 1 и u. (Энергичные читатели, не знакомые с такого рода построениями, могут сами убедиться в том, что эти построения непосредственно следуют из только что приведенных алгебраических правил сложения и умножения комплексных чисел, также как и упомянутые выше тригонометрические тождества.)
Построение множества Мандельброта
Теперь мы можем рассмотреть, как определяется множество Мандельброта. Пусть z — это некоторое произвольное комплексное число. Каковым бы ни было это число, оно представляется некоторой точкой на плоскости Аргана. Рассмотрим теперь отображение, при котором z превращается в новое комплексное число, равное
z → z>2 + с,
где с есть некое фиксированное (то есть заданное) комплексное число. Числу z>2 + с будет сопоставляться некоторая другая точка на плоскости Аргана. Например, если с равно числу 1,63 — i4,2, то z отображается согласно формуле
z → z>2 + 1,63 — i4,2,
так что, в частности, число 3 превратится в
З>2 +1,63 — i4,2 = 9+1,63 — i4,2 = 10,63 — i4,2,
а число -2,7 + i0,3 в
(-2,7 + i0,3)>2 + 1,63 — i4,2 =
= (-2,7)>2 — (0,3)>2 + 1,63 +
+ i{(-2,7)(0,3) — 4,2} = 8,83 — i5,82.
Когда числа становятся громоздкими, вычисления лучше выполнять на компьютере.
Теперь, каково бы ни было число c, число 0 превращается, согласно принятой схеме, в число с. А что же можно сказать о самом числе с? Оно превращается в с>2 + с. Давайте продолжим этот процесс, применив наше преобразование к с>2 + с. Мы получим:
(с>2 + с)>2 + с = с + 2 с + с>2 + с.
Снова повторим отображение, применив его к приведенному выше числу. Мы получим:
(с>4 + 2 с>3 + с>2 + с)>2 + с =
= с>8 + 4с>7 + 6 с>6 + 6с>5 + 5с>4 + 2 с>3 + с>2 + с.
Потом еще раз применим процедуру, теперь уже к последнему числу, и т. д. В результате мы получаем последовательность комплексных чисел, которая начинается с числа 0:
0, с, с>2 + с, с>4 + 2с>3 + с>2 + с…
Данная процедура, будучи реализована при некоторых определенных значениях комплексного числа с, дает последовательность чисел, которые все время остаются вблизи начала координат плоскости Аргана; точнее, для выбранных таким образом значений с получаемая последовательность оказывается ограниченной, то есть любой ее член находится в пределах некоторого фиксированного круга с центром в начале координат (рис. 3.12).
Рис. 3.12. Последовательность точек на плоскости Аргана ограничена, если вся она целиком помещается в пределах некоторого фиксированного круга. (Итерация на рисунке начинаетсл с точки
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Опубликовано в монографии: «Фонарь Диогена. Проект синергийной антропологии в современном гуманитарном контексте». М.: Прогресс-Традиция, 2011. С. 522–572.Источник: Библиотека "Института Сенергийной Антрополгии" http://synergia-isa.ru/?page_id=4301#H)
Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.
С 1947 года Кришнамурти, приезжая в Индию, регулярно встречался с группой людей, воспитывавшихся в самых разнообразных условиях культуры и дисциплины, с интеллигентами, политическими деятелями, художниками, саньяси; их беседы проходили в виде диалогов. Беседы не ограничиваются лишь вопросами и ответами: они представляют собой исследование структуры и природы сознания, изучение ума, его движения, его границ и того, что лежит за этими границами. В них обнаруживается и особый подход к вопросу о духовном преображении.Простым языком раскрывается природа двойственности и состояния ее отсутствия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.