Новый ум короля: О компьютерах, мышлении и законах физики - [45]

Шрифт
Интервал

натуральных чисел — числителей и знаменателей — через отдельные натуральные числа; см. главу 2, «Двоичная запись цифровых данных») Множества, которые можно поставить во взаимно-однозначное соответствие с рядом натуральных чисел, называются счетными; таким образом, счетные бесконечные множества — это множества, состоящие из N>0 элементов. И, как мы только что убедились, множество целых чисел, равно как и множество дробных чисел, является счетным.

Существуют ли множества, не являющиеся счетными? Несмотря на расширение натуральной системы чисел сначала целыми, а затем и рациональными числами, общее число рассматриваемых объектов не увеличилось. Как мы убедились, число объектов во всех случаях осталось счетным. У читателя теперь может создаться впечатление, что все бесконечные множества счетны. Это не так, поскольку ситуация меняется коренным образом при переходе к действительным числам. Одним из замечательных достижений Кантора явилось доказательство того, что действительных чисел больше, чем натуральных. При этом Кантор применил так называемый диагональный процесс, который упоминался в главе 2 и который Тьюринг использовал в своем доказательстве неразрешимости проблемы остановки Для машин Тьюринга. Доказательство Кантора, как и более позднее доказательство Тьюринга, — это доказательство от противного. Предположим, что утверждение, справедливость которого мы хотим установить, на самом деле ложно, то есть множество действительных чисел счетно. Тогда множество действительных чисел в интервале от 0 до 1 должно быть заведомо счетным и должен существовать какой-нибудь список, устанавливающий взаимно-однозначное соответствие между рассматриваемым множеством действительных чисел и множеством натуральных чисел, наподобие вот этого:

Жирным шрифтом выделены диагональные десятичные знаки. В данном случае эти цифры равны:

1, 4, 1, 0, 0, 3, 1, 4, 8, 5, 1…..

Метод диагонального процесса состоит в построении действительного числа (в интервале от 0 до 1), чье десятичное разложение (после десятичной запятой) отличается в каждом разряде от соответствующего числа приведенной выше последовательности. Для определенности положим, что цифра данного разряда равна 1, если цифра соответствующего разряда на диагонали отлична от 1, и равна 2, если цифра на диагонали равна 1. Таким образом, в рассматриваемом случае получается такое действительное число:

0,21211121112…

Это действительное число не может быть в списке, поскольку оно отличается от первого числа в первом десятичном разряде (после десятичной запятой), от второго числа — во втором разряде, от третьего числа — в третьем разряде и т. д. Таким образом, мы приходим к противоречию, поскольку полагали, что рассматриваемый список содержит все действительные числа в интервале от 0 до 1. Из этого противоречия следует истинность утверждения, которое нам требовалось доказать, — а именно, что не существует взаимно-однозначного соответствия между множеством действительных чисел и множеством натуральных чисел и, соответственно, что число действительных чисел больше числа рациональных чисел и не является счетным.

Число действительных чисел равно бесконечному числу, обозначаемому С. (Здесь С является сокращенным обозначением слова континуум — другого названия системы действительных чисел.) Может возникнуть вопрос, почему мы не обозначаем это число, например, N>1. Символ N>1 на самом деле обозначает следующее за N>0 бесконечное число, а вопрос о том, верно ли утверждение СN>1 — это так называемая континуум-гипотеза, — представляет собой знаменитую и пока что нерешенную проблему.

При этом следует отметить, что множество вычислимых чисел счетно. Пересчитать их можно просто перечислив по порядку машины Тьюринга, порождающие действительные числа (то есть машины, последовательно порождающие цифры каждого разряда действительных чисел). При этом можно исключить из списка любую машину Тьюринга, порождающую действительное число, которое уже встречалось ранее в списке. Поскольку множество машин Тьюринга счетно, то, следовательно, счетным также должно быть и множество вычислимых действительных чисел. Почему же нельзя применить диагональный процесс к этому списку с тем, чтобы породить новое не включенное в список вычислимое число? Ответ состоит в том, что в общем случае невозможно с помощью вычислений решить, следует ли ту или иную машину Тьюринга включать в список, поскольку для этого мы должны были бы иметь возможность решить проблему остановки. Некоторые машины Тьюринга, начав порождение цифр действительного числа, могут зависнуть и оказаться уже не в состоянии выдать очередную цифру (поскольку они «не остановятся»). Не существует вычислимого способа, который позволил бы решить, какие именно машины Тьюринга зависнут таким образом. Это, в сущности, и есть проблема остановки. Значит, хотя метод диагонального процесса и породит некоторое действительное число, последнее не будет вычислимым. На самом деле, это рассуждение может использоваться для доказательства существования невычислимых чисел. Именно в этом ключе выдержано описанное в предыдущей главе тьюринговское доказательство существования классов алгоритмически неразрешимых задач. Другие области применения диагонального процесса будут рассмотрены дальше.


Еще от автора Роджер Пенроуз
Большое, малое и человеческий разум

Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.


Тени разума. В поисках науки о сознании

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.


Рекомендуем почитать
Тот, кто убил лань

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дзэн как органон

Опубликовано в монографии: «Фонарь Диогена. Проект синергийной антропологии в современном гуманитарном контексте». М.: Прогресс-Традиция, 2011. С. 522–572.Источник: Библиотека "Института Сенергийной Антрополгии" http://synergia-isa.ru/?page_id=4301#H)


Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.

Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.


Традиция и революция

С 1947 года Кришнамурти, приезжая в Индию, регулярно встречался с группой людей, воспитывавшихся в самых разнообразных условиях культуры и дисциплины, с интеллигентами, политическими деятелями, художниками, саньяси; их беседы проходили в виде диалогов. Беседы не ограничиваются лишь вопросами и ответами: они представляют собой исследование структуры и природы сознания, изучение ума, его движения, его границ и того, что лежит за этими границами. В них обнаруживается и особый подход к вопросу о духовном преображении.Простым языком раскрывается природа двойственности и состояния ее отсутствия.


Снежное чувство Чубайса; Чубайсу - 49

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О пропозициях

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.