Новый ум короля: О компьютерах, мышлении и законах физики - [37]
6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 +5,
12 = 5 + 7, 14 = 3 + 11=7 + 7…
и убеждаясь, что для каждого четного числа какое-то из разбиений образовано двумя простыми числами. (Очевидно, нам не надо проверять пары четных слагаемых, кроме 2 + 2, поскольку все простые числа за исключением 2 — нечетные.) Наша машина должна остановиться только в том случае, если она находит четное число, для которого ни одно из разбиений не является парой простых чисел. В этом случае мы получили бы контрпример к предположению Гольдбаха, т. е. нашли бы четное число, большее 2, которое не является суммой двух простых чисел. Следовательно, если бы мы могли установить, останавливается машина Тьюринга когда-нибудь или нет, то тем самым мы выяснили бы, справедливо предположение Гольдбаха или нет.
Возникает естественный вопрос: каким образом следует определять, остановится какая-то определенная машина Тьюринга (в которую введены конкретные начальные данные) или нет? Для многих машин Тьюринга ответить на этот вопрос нетрудно, но, как мы видели выше, иногда для ответа может потребоваться решение какой-нибудь до сих пор не решенной математической задачи. Так существует ли некая алгоритмическая процедура для решения общей проблемы — проблемы остановки — полностью механическим путем? Тьюринг показал, что такой процедуры на самом деле нет.
В сущности, его доказательство сводилось к следующему. Предположим, наоборот, что указанный алгоритм существует[53]. Тогда существует и некая машина Тьюринга Н, которая «решает», остановится ли в конце концов n-я машина Тьюринга, действуя на число m. Условимся, что результатом действия машины Н будет лента с номером 0, если n-я машина не останавливается, и с номером 1 в противоположном случае:
Здесь мы могли бы воспользоваться способом кодирования пары (n, m ), использованным ранее для универсальной машины Тьюринга U. Однако это привело бы к проблеме технического характера, поскольку при некоторых n (например, n = 7) T>n будет определена некорректно, и маркер 111101 будет непригоден для отделения на ленте n от m. Чтобы избежать этой проблемы, будем полагать, что n представлено не в двоичной, а в расширенной двоичной форме, тогда как для m будет по-прежнему использоваться обычная двоичная запись. В этом случае комбинации 110 будет достаточно для разделения n и m. Использование точки с запятой в обозначении Н(n ; m ) в отличие от запятой в обозначении универсальной машины U(n, m ) указывает на это различие в кодировании.
Представим себе теперь бесконечную таблицу, в которую включены окончательные результаты действий всех возможных машин Тьюринга на все возможные (различные) входные данные. В этой таблице N-й ряд представляет собой результаты вычислений n-й машины Тьюринга, полученные при ее работе последовательно с m = 0, 1, 2, 3, 4…:
Я немного «сжульничал» и не стал располагать машины Тьюринга по порядку их действительных номеров. Если бы я так сделал, то получился бы список, начало которого выглядело бы слишком скучным, поскольку все машины при значениях n меньших 11 не дают ничего, кроме >□, а для n = 11 мы имеем просто нули. Дабы сделать начало этой таблицы более интересным, я предположил, что мы использовали некую гораздо более эффективную систему кодирования. Фактически, я просто присвоил ячейкам более или менее произвольные значения, только чтобы дать вам общее представление о том, как может выглядеть эта таблица.
На самом деле нам не требуется, чтобы эта таблица была построена путем вычислений, скажем, с помощью некоторого алгоритма. (На самом деле, как мы увидим далее, такого алгоритма и не существует.) Достаточно просто представить себе, что каким-то образом истинный список попал в наше распоряжение, возможно, с помощью Бога! Если бы мы попытались получить эту таблицу с помощью вычислений, то именно символы >□ вызвали бы затруднения, поскольку мы не могли бы с уверенностью сказать, когда в той или иной ячейке должен быть помещен символ >□ — ведь соответствующие вычисления никогда не заканчиваются!
Тем не менее искомую таблицу можно, построить с помощью вычислительной процедуры, если использовать нашу гипотетическую машину Н, поскольку она могла бы определить, где на самом деле появляются значения >□. Однако вместо этого мы используем машину Н для того, чтобы избавиться от появления значений >□ в таблице, заменив их во всех случаях нулями. Это достигается за счет вычисления значения Н(n ; m ), предваряющего действие T>n на m , после чего мы позволим T>n производить соответствующие действия, только если H(n ; m ) = 1 (т. е. только тогда, когда вычисление T>n(m) приводит к определенному результату), и будем просто записывать в соответствующую ячейку 0 при Н(n ; m ) = 0 (т. е. если T>n(m) = >□). Мы можем записать эту новую процедуру, представляющую собой последовательное действие Н(n ; m) и T(m), как
T>n(m) х Н(n; m ).
(Здесь я использую общепринятую в математике договоренность о последовательности выполнения действий, согласно которой операция, записанная справа, должна выполняться первой. Обратите внимание, что в этом случае можно символически записать
Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.
Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.
С 1947 года Кришнамурти, приезжая в Индию, регулярно встречался с группой людей, воспитывавшихся в самых разнообразных условиях культуры и дисциплины, с интеллигентами, политическими деятелями, художниками, саньяси; их беседы проходили в виде диалогов. Беседы не ограничиваются лишь вопросами и ответами: они представляют собой исследование структуры и природы сознания, изучение ума, его движения, его границ и того, что лежит за этими границами. В них обнаруживается и особый подход к вопросу о духовном преображении.Простым языком раскрывается природа двойственности и состояния ее отсутствия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.