Новый ум короля: О компьютерах, мышлении и законах физики - [36]

Шрифт
Интервал

), но этим разнообразие возможных процедур и вариантов исходной схемы Тьюринга отнюдь не исчерпывается. В действительности я сам, описывая машину, несколько отклонился от того, что исходно было предложено Тьюрингом. Но ни одно из этих отклонений не имеет сейчас для нас существенного значения.

Неразрешимость проблемы Гильберта

Мы теперь вплотную подходим к той цели, ради которой Тьюринг с самого начала разрабатывал свою теорию — получить ответ на вопрос, заключенный в общей проблеме алгоритмической разрешимости, поставленной Гильбертом, а именно: существует ли некая механическая процедура для решения всех математических задач, принадлежащих к некоторому широкому, но вполне определенному классу? Тьюринг обнаружил, что он мог бы перефразировать этот вопрос следующим образом: остановится ли в действительности n-я машина Тьюринга, если на ее вход поступит число m Эта задача получила название проблемы остановки. Не так сложно составить список команд, для которых машина никогда не остановится при любомm (как, например, в случаях n = 1 или 2, рассмотренных в предыдущем разделе, а также во всех случаях, когда вообще отсутствует команда STOP ). Точно так же существует множество списков команд, для которых машина будет останавливаться всегда, независимо от вводимого числа m (например, T>11 ). Кроме того, некоторые машины при работе с одними числами останавливались бы, а с другими — нет. Совершенно очевидно, что алгоритм, который никогда не прекращает работу, бесполезен. Это, собственно, и не алгоритм вовсе. Поэтому важно уметь ответить на вопрос, приведет ли когда-нибудь работа машины T>n над данным числом m к какому-то ответу или нет! Если нет (т. е. процесс вычисления никогда не прекращается), то я буду выражать это следующей записью:

T>n(m ) = >□.

(Сюда же включены машины, которые в ходе работы попадают в ситуацию, когда нет команды, определяющей их дальнейшее поведение, как это было в случае рассмотренных выше фиктивных машин T>4 и T>1. К сожалению, наша на первый взгляд работоспособная машина T>3 должна теперь также считаться фиктивной, т. е.

T>3(m ) = >□, поскольку результатом ее действия всегда будет просто пустая лента, тогда как нам, чтобы приписать номер полученному ответу, нужна хотя бы одна единица на выходе! Машина T>11, однако, совершенно полноправна, поскольку она производит единственную 1. Результатом ее работы будет лента с номером 0, так что T>11(m ) = 0 для любого m.)

В математике весьма важно иметь возможность установить момент, когда машина Тьюринга остановится. Рассмотрим для примера уравнение

(х + 1)>ω+3 + (у + 1)>ω+3 = (z + 1)>ω+3.

(Не пугайтесь, даже если Вы не любите вникать в детали математических вычислений. Это уравнение используется здесь только в качестве примера, и от вас не требуется его глубокого понимания.) Это конкретное уравнение относится к известной (возможно, самой известной) и пока нерешенной математической проблеме. Проблема формулируется следующим образом: существует ли какой-либо набор х, у, z, ω, для которого это равенство выполняется. Знаменитое утверждение, записанное на полях «Арифметики» Диофанта великим французским математиком семнадцатого столетия Пьером де Ферма (1601–1665) и известное как «последняя теорема Ферма», гласит, что это равенство никогда не выполняется[49][50]. Будучи адвокатом по профессии, Ферма тем не менее был искуснейшим математиком своего времени. (Ферма был современником Декарта.) В своей записи он утверждал, что знает «воистину прекрасное доказательство» своей теоремы, но поля книги слишком малы, чтобы его привести. До сегодняшнего дня никому так и не удалось ни воспроизвести это доказательство[51], ни найти опровергающий это утверждение пример!

Очевидно, что для заданной четверки чисел (x, у, z, ω ) выяснить, выполняется это равенство или нет, можно простым вычислением. Значит, мы можем представить себе вычислительный алгоритм, который последовательно перебирает все возможные четверки чисел одну за другой и останавливается только тогда, когда равенство удовлетворяется. (Мы уже знаем, что для конечных наборов чисел существуют способы их кодирования на ленте вычислимым способом, а именно, в виде одного числа. Таким образом, перебор всех четверок можно провести, просто следуя естественному порядку соответствующих им одиночных чисел.) Если бы мы могли установить, что этот алгоритм никогда не останавливается, то это стало бы доказательством утверждения Ферма.

Сходным образом в терминах проблемы остановки машины Тьюринга можно перефразировать многие другие нерешенные математические проблемы. Примером такого рода проблем может служить так называемое предположение Гольдбаха: любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел[52]). Процесс, с помощью которого можно установить, относится некоторое натуральное число к простым или нет, является алгоритмическим, поскольку достаточно проверить делимость данного числа на все числа, меньшие его, а это достигается с помощью конечного числа вычислительных операций. Мы можем придумать машину Тьюринга, которая перебирает четные числа 6, 8, 10, 12, 14…, пробуя все возможные способы разбиения их на пары нечетных чисел


Еще от автора Роджер Пенроуз
Большое, малое и человеческий разум

Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.


Тени разума. В поисках науки о сознании

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.


Рекомендуем почитать
Воззвание к жизни: против тирании рынка и государства

Трактат бельгийского философа, вдохновителя событий Мая 1968 года и одного из главных участников Ситуационистского интернационала. Издан в 2019 году во Франции и переведён на русский впервые. Сопровождается специальным предисловием автора для русских читателей. Содержит 20 документальных иллюстраций. В формате PDF A4 сохранен издательский макет книги.


История мастера

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Могильная Фантазия

Самоубийство или суицид? Вы не увидите в этом рассказе простое понимание о смерти. Приятного Чтения. Содержит нецензурную брань.


Эссе на эстетические темы в форме предисловия

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Из «Дополнений к диалектике мифа»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Размышления о русской революции

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.