Новый ум короля: О компьютерах, мышлении и законах физики - [39]

Шрифт
Интервал

решить вопрос об остановке при ее работе с каким-то особенно громоздким числом — в действительности, все как раз наоборот, как мы сможем скоро убедиться. Мы вообще ничего не говорили о неразрешимости какой-то отдельной задачи, а только лишь об алгоритмической неразрешимости классов задач. В каждом конкретном случае ответ будет либо «да», либо «нет», поэтому алгоритм для решения частной задачи, конечно, существует, а именно алгоритм, который при применении к этой задаче просто дает ответ «да» или, может быть, «нет»! Трудность в данном случае состоит в том, что мы не знаем, какой именно из имеющихся алгоритмов применять в том или ином случае. Это вопрос об установлении математической истинности отдельного утверждения, но не об общем решении проблемы для целого класса утверждений. Очень важно сознавать, что сами по себе алгоритмы не доказывают математическую истину. Решение о правомерности использования каждого алгоритма должно всегда приходить извне.

Как превзойти алгоритм

К вопросу о том, как установить истинность математических утверждений, мы вернемся позднее, в связи с теоремой Геделя (см. главу 4). Пока же я бы хотел обратить ваше внимание на то, что доказательство Тьюринга носит гораздо более конструктивный характер и не столь негативно, как могло показаться из предыдущего изложения. Мы ведь не показали, что есть некая определенная машина Тьюринга, для которой абсолютно невозможно решить, останавливается она или нет. Более того, если внимательно проследить за доказательством, то выяснится, что для кажущихся «чрезвычайно сложными» машин сама процедура Тьюринга, использованная для их построения, неявным образом дает ответ! Посмотрим, как это происходит. Допустим, у нас есть алгоритм, который иногда позволяет определить, что машина Тьюринга не остановится. Вышеописанная процедура Тьюринга позволяет явно проследить за вычислениями машины Тьюринга в случае, когда этот конкретный алгоритм не дает ответа на вопрос об остановке вычислительного процесса. Однако тем самым эта процедура дает нам в этом случае возможность узнать ответ! Конкретная машина Тьюринга, за работой которой мы следим, и вправду никогда не остановится.

Чтобы подробно разобраться в этом вопросе, предположим, что у нас есть некий алгоритм, который иногда позволяет решить проблему остановки. Как и ранее, мы обозначим этот алгоритм (машину Тьюринга) через H, но теперь мы допускаем, что этот алгоритм не всегда может точно определить, что машина Тьюринга не остановится:

так что Н(n ; m ) = >□ возможно в случае, когда T>n(m) = >□. Существует немало алгоритмов типа Н(n; m). (Например, Н(n; m ) мог бы просто давать на выходе 1, как только машина T>n(m ) останавливается, хотя такой алгоритм едва ли представляет большой практический интерес!)

Мы можем повторить процедуру Тьюринга, следуя уже пройденным путем, с той только разницей, что теперь некоторые из «>□» останутся не замененными на нули. Как и ранее, применив диагональный процесс, получим

1 + T>n(n ) х H(n; n )

в качестве n-го элемента диагонали. (Мы будем иметь >□ каждый раз, когда H (n; n) = >□.

Отметим, что >□x>□=>□, 1 + >□ = >□.) Это безупречно алгоритмизованное вычисление, поэтому оно может быть произведено некоторой машиной Тьюринга, скажем k-й, и тогда мы получим

1 + T>n(n ) х H(n; n) = Т>k(n ).

Для k-го диагонального элемента (т. е. n = k ) мы имеем

1 + T>k(k) x H(k; k) = T>k(k).

Если вычисления Т>k(k ) останавливаются, то мы приходим к противоречию (в этом случае Н(k; k) должно равняться единице, но тогда возникнет невыполнимое равенство: 1+Т>k(k ) = Т>k(k )). Значит, Т>k(k ) не может остановиться, т. е.

Т>k(k ) = >□.

Но алгоритм не может этого «знать», потому что, если бы он давал Н(k; k) = 0, мы снова пришли бы к противоречию (мы получили бы тогда неверное соотношение 1+0=>□).

Таким образом, если мы можем отыскать k, то мы знаем, как построить вычислительную процедуру, для которой алгоритм не дает решения проблемы остановки, но нам ответ известен! А как нам найти k ? Это непростая задача. Необходимо тщательно изучить конструкцию H(n; m ) и T>n(m) и понять, как в точности действует 1 + Т>n(n ) х Н(n; n) в качестве машины Тьюринга. Затем надо определить номер этой машины, который и есть k. Конечно, это выполнить трудно, но вполне возможно[54]. Из-за этих трудностей вычисление Т>k(k ) нас бы вовсе не интересовало, не будь она специально предназначена для доказательства неэффективности алгоритма H! Важно то, что мы получили строго определенную процедуру, которая для любого наперед заданного алгоритма H позволяет найти такое k, что для Т>k(k ) этот алгоритм не может решить проблему остановки, т. е. мы тем самым превзошли его. Возможно, мысль о том, что мы «умнее» каких-то алгоритмов, принесет нам некоторое удовлетворение!

На самом деле, упомянутая процедура настолько хорошо определена, что мы могли бы даже найти алгоритм для нахождения k по заданному H. Поэтому, прежде чем мы «погрязнем» в самодовольстве, мы должны осознать, что этот алгоритм может улучшить H[55], поскольку он, по сути, «знает», что Т>k(k) = >□, - или все-таки нет? В предыдущем изложении было удобно использовать антропоморфный термин «знать» по отношению к алгоритму. Однако не мы ли в конечном счете «знаем», тогда как алгоритм просто следует определенным нами правилам? А может быть мы сами просто следуем правилам, запрограммированным в конструкции нашего мозга и в окружающей нас среде? Эта проблема затрагивает не только алгоритмы, но и то, как мы выносим суждения об истинности и ложности. К этим важнейшим проблемам мы вернемся позднее. Вопрос о математической истине (и ее неалгоритмической природе) будет рассмотрен в главе 4. На данный момент мы, по крайней мере, получили некоторое представление о


Еще от автора Роджер Пенроуз
Большое, малое и человеческий разум

Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.


Тени разума. В поисках науки о сознании

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.


Рекомендуем почитать
Философия религии. Концепции религии в зарубежной и русской философии

Учебное пособие подготовлено на основе лекционного курса «Философия религии», прочитанного для студентов миссионерского факультета ПСТГУ в 2005/2006 учебном году. Задача курса дать студентам более углубленное представление о разнообразных концепциях религии, существовавших в западной и русской философии, от древности до XX в. В 1-й части курса рассмотрены религиозно-философские идеи в зарубежной философии, дан анализ самых значительных и характерных подходов к пониманию религии. Во 2-й части представлены концепции религии в русской философии на примере самых выдающихся отечественных мыслителей.


Дзэн как органон

Опубликовано в монографии: «Фонарь Диогена. Проект синергийной антропологии в современном гуманитарном контексте». М.: Прогресс-Традиция, 2011. С. 522–572.Источник: Библиотека "Института Сенергийной Антрополгии" http://synergia-isa.ru/?page_id=4301#H)


Философия и методология науки XX века: от формальной логики к истории науки. Хрестоматия.

Приведены отрывки из работ философов и историков науки XX века, в которых отражены основные проблемы методологии и истории науки. Предназначено для аспирантов, соискателей и магистров, изучающих историю, философию и методологию науки.


Традиция и революция

С 1947 года Кришнамурти, приезжая в Индию, регулярно встречался с группой людей, воспитывавшихся в самых разнообразных условиях культуры и дисциплины, с интеллигентами, политическими деятелями, художниками, саньяси; их беседы проходили в виде диалогов. Беседы не ограничиваются лишь вопросами и ответами: они представляют собой исследование структуры и природы сознания, изучение ума, его движения, его границ и того, что лежит за этими границами. В них обнаруживается и особый подход к вопросу о духовном преображении.Простым языком раскрывается природа двойственности и состояния ее отсутствия.


Снежное чувство Чубайса; Чубайсу - 49

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О пропозициях

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.