Невозможность второго рода. Невероятные поиски новой формы вещества - [13]

Шрифт
Интервал

ежемесячную колонку “Математические игры”.

Статья, которую принес мне Дов, как раз и была колонкой Мартина Гарднера в Scientific American, посвященной замощениям Пенроуза и опубликованной в 1977 году, примерно через три года после изобретения Пенроузом этих замощений. В статье рассказывалось, как Пенроуз обнаружил изящное решение проблемы, над которой много лет бились любители развлекательной математики: можно ли найти такой набор плиток, который покрывает пол без зазоров, причем только непериодически?

Треугольниками можно покрыть пол не периодически, если, например, расположить их в форме спирали, как показано на иллюстрации внизу слева. Однако из треугольников можно также выстроить периодическое замощение, показанное внизу справа. Поэтому треугольники не являются решением поставленной задачи.

Когда-то математики считали, что невозможно найти фигуру или комбинацию фигур, которая будет удовлетворять этим требованиям. Однако в 1964 году математик Роберт Бергер сконструировал корректный пример, в котором использовалось 20426 различных форм плиток. С течением времени другим удалось найти примеры с использованием намного меньшего числа плиток различной формы.




В 1974 году Пенроуз совершил большой прорыв, когда нашел решение задачи с использованием всего двух плиток разной формы, которые он назвал “змеями” и “дротиками” (kites и darts; см. вверху). На каждой из этих плиток нарисована дуга окружности, или “лента”. Пенроуз ввел правило, согласно которому две плитки можно прикладывать друг к другу сторонами, только если ленты на обеих сторонах общего ребра состыковываются. Следование этому “правилу совмещения” не позволяет плиткам складываться в какой-либо регулярно повторяющийся рисунок. Замощение, представленное выше, демонстрирует сложный рисунок, образуемый лентой, когда много змеев и дротиков прикладываются друг к другу в соответствии с пенроузовским правилом совмещения.

Филадельфия, октябрь 1981 года

В статье Гарднера описывалось множество открытых Пенроузом удивительных особенностей его оригинальных замощений, а также их дополнительные свойства, открытые позднее его другом, математиком Джоном Конвеем из Кембриджского университета.

Конвею принадлежит бессчетное множество результатов в теории чисел, теории групп, теории узлов, теории игр и других фундаментальных областях математики. Например, именно он изобрел игру “Жизнь” – знаменитую математическую модель (так называемый клеточный автомат), где реализуются некоторые аспекты самовоспроизводящихся машин и биологической эволюции.

Когда Пенроуз познакомил Конвея с новыми замощениями, тот пришел в абсолютный восторг. Он немедленно начал вырезать фигуры из бумаги и картона, складывая их и заполняя столы и все остальные поверхности своего жилища различными сочетаниями вырезанных фигур, чтобы изучить их свойства. Статья Гарднера в Scientific American включала многие из важных фактов, обнаруженных Конвеем, что помогло нам с Довом прояснить для себя некоторые на первый взгляд неочевидные свойства пенроузовских замощений.

Читая другие статьи, мы узнали, что точная форма этих плиток неважна, покуда они соединяются друг с другом способом, эквивалентным змеям и дротикам. Версия, которую нам с Довом оказалось проще анализировать, состояла из пары ромбов – широкого и узкого. Именно эти четырехугольники были использованы для создания замощения, изображенного на следующей странице.

Из одних только широких ромбов можно сложить периодический узор, равно как и из одних только узких. Также из различных комбинаций этих двух фигур можно получить другие периодические замощения.



Однако использование ромбов – это еще не все. Чтобы полностью исключить возникновение периодичности, необходимо ввести некие правила совмещения. Один из возможных подходов состоит в том, чтобы использовать ленты по аналогии с теми, что придумал Пенроуз для своих змеев и дротиков, и установить правило, гласящее, что две плитки могут соединяться, только если на ребре, по которому они граничат, состыковываются их ленты.

Другой способ воспрепятствовать появлению обычного периодического рисунка состоит в замене прямых краев плиток кривыми или имеющими специальные выступы, подобно деталям пазла, – это отлично иллюстрирует замечательный пример паркета из индивидуальных деталей, изображенный справа. В смысле взаимного расположения плиток этот деревянный паркет эквивалентен замощению из серых и белых ромбов. Единственное отличие состоит в том, что на деревянные плитки добавлены замки́. Они позволяют деталям соединяться друг с другом, как в пазле, и исключают возможность выложить ими какой-либо периодический узор.

Если вы впервые видите замощение Пенроуза, уделите немного времени его изучению и оцените свое первое впечатление. Как бы вы могли его охарактеризовать? Видите ли вы в нем упорядоченный или неупорядоченный узор? Если вам кажется, что плитки следуют друг за другом в упорядоченной последовательности, то как предсказать, какая плитка окажется следующей?

Глядя на замощение из широких серых и узких белых ромбов, мы с Довом заметили определенные часто повторяющиеся мотивы, такие как звездообразные кластеры из пяти серых плиток, окружающих центральную точку, – чего трудно было бы ожидать для случайного узора. Но мы также заметили, что эти кластеры не повторяются через равные интервалы, как должно быть в периодическом рисунке. И в то же время расстояния между этими повторениями не выглядели произвольными, что было бы ожидаемо при случайном узоре.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Книга Бытия. Общая история происхождения

В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.


Эта странная математика. На краю бесконечности и за ним

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр.


Парадокс добродетели

Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.