Невозможность второго рода. Невероятные поиски новой формы вещества - [15]

Шрифт
Интервал

С помощью моделей из шариков и проволоки мы с Довом уже начали конструировать аналогичную трехмерную структуру, состоящую из строительных блоков, каждый из которых представлял один или несколько атомов. Для нашей модели мы перевели замки Пенроуза в атомные связи, соединявшие атомы, предоставляемые одним из наших трехмерных строительных блоков, с атомами другого. Эти атомы естественным образом препятствовали бы затвердеванию в виде любого типа кристалла с регулярной периодической решеткой. Вместо этого атомы были бы вынуждены создавать искомый нами новый тип вещества с икосаэдрической симметрией.

Лично меня сильнее всего цепляла именно эта линия размышлений, поскольку я находился под большим влиянием воображаемого воннегутовского льда-девять, в котором новая компоновка молекул воды – лед-девять – была стабильнее обычного кристаллического льда. Новая форма вещества, за которой мы охотились, могла бы оказаться, если ее удастся найти, значительно более стабильным материалом, тверже обычных кристаллов. Но какого рода закономерность стояла за правилами совмещения?

Одна из подсказок состояла в том, что замощения Пенроуза подчиняются так называемому правилу дефляции. Каждый широкий и узкий ромб в замощении Пенроуза можно разделить на части меньшего размера, которые образуют другое замощение Пенроуза. На рисунке внизу исходное замощение показано жирными линиями. Способ разделения, или дефляции, каждой широкой и узкой плитки отмечен пунктиром. Как видно на рисунке, пунктирные линии соединяются и образуют новое замощение Пенроуза с бо́льшим количеством элементов.



Начав с небольшой группы плиток и повторяя процедуру дефляции, можно получить замощение Пенроуза с любым желаемым числом элементов. Обратный процесс, заменяющий группы плиток меньшего размера более крупными, называется правилом инфляции. Правила дефляции и инфляции доказали нам с Довом, что замощение Пенроуза обладает своего рода предсказуемой иерархической структурой.

Мы с Довом были убеждены, что сочетание симметрии пятого порядка, правил совмещения и правил дефляции-инфляции служит безошибочным свидетельством того, что пенроузовское размещение плиток является упорядоченным в новом, неинтуитивном смысле. Но каким именно порядком оно обладает?

Это не давало нам покоя. Мы с Довом знали, что если сумеем ответить на этот вопрос, то откроем путь в обход давно признанного закона, диктующего, какими типами симметрии может обладать вещество. А это может оказаться ключом к серьезному сдвигу парадигмы и открытию множества невиданных доселе материалов.

Но, ради всего святого, что же это за обходной путь? Мы оказались в тупике.

Глава 3

Обнаружение лазейки

Филадельфия, 1982–1983 годы

Важную подсказку, позволившую раскрыть секрет симметрии замощений Пенроуза, мы с Довом обнаружили в неопубликованной работе гениального математика-любителя по имени Роберт Амманн.

Он был необычным человеком, ведущим уединенный образ жизни. Способностей Амманна хватило для поступления в Университет Брандейса в середине 1960-х. Но отучился он только три года, в течение которых редко покидал свою комнату. В конце концов его отчислили, и он так никогда и не получил диплома.

В дальнейшем он самостоятельно освоил программирование компьютеров и нашел работу в области низкоуровневого программирования. К сожалению, он потерял место во время волны сокращений в компании. Тогда он стал сортировать корреспонденцию на почте, поскольку на этой работе не требовалось много общаться с людьми. Сослуживцы считали его предельно некоммуникабельным и замкнутым интровертом.

Вот только почтовые служащие наверняка не догадывались, что Амманн был настоящим математическим гением. В свободное от работы время он погружался в тот же мир развлекательной математики, что увлекал таких мэтров науки, как Роджер Пенроуз и Джон Конвей. С характерной скромностью Амманн описывал себя как “склонного к математике рисовальщика каракулей”.

Мы с Довом натолкнулись на идеи Амманна в двух коротких статьях в малоизвестных журналах, написанных Аланом Маккеем, кристаллографом и профессором материаловедения из Лондонского университета. Маккей разделял наше восхищение икосаэдром, замощениями Пенроуза и фантазиями о материалах с запрещенной симметрией пятого порядка. В этих двух статьях, напоминавших скорее спекулятивные эссе, нежели исследовательские работы, были изложены некоторые его важные соображения по этой теме. Они включали две иллюстрации, которые сразу вызвали у нас особый интерес.

На первой Маккей изобразил пару ромбоэдров – широкий и узкий, как показано на рисунке внизу. Нам с Довом эти трехмерные фигуры уже были хорошо знакомы. Это были очевидные трехмерные аналоги широких и узких ромбов, которые использовались для построения двумерных замощений Пенроуза. Так что, по-видимому, Маккей шел тем же путем, что и мы.

Однако мы были разочарованы, не обнаружив в его статье никаких правил совмещения, которые не давали бы трехмерным строительным блокам образовывать периодические кристаллические структуры. Для нас с Довом главной задачей был как раз поиск этих особых правил совмещения. Без них атомы могли бы по-прежнему соединяться в одну из нескольких обычных кристаллических структур, вместо того чтобы вынужденно образовывать невозможную структуру, которую мы надеялись открыть.


Рекомендуем почитать
Моделирование рассуждений. Опыт анализа мыслительных актов

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.


Скоростное конспектирование

Описана система скоростной конспективной записи, позволяющая повысить в несколько раз скорость записи и при этом получить конспект, удобный для чтения и способствующий запоминанию материала. Излагаемая система позволяет на общей основе создать каждому человеку личные приемы записи, эриентированные на специфику конспектируемых текстов.Книга может быть полезна студентам, школьникам старших классов, научным работникам, слушателям курсов повышения квалификации.


Был ли маневр над Тунгуской

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Библиография как историческая наука

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Познай себя

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О гравитации нетрадиционно

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Книга Бытия. Общая история происхождения

В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.


Эта странная математика. На краю бесконечности и за ним

Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр.


Парадокс добродетели

Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.